
Chapter 5

Learning biases and optimal learning
conditions

Simulating acquisition of a restrictive grammar with an algorithmic learner involves many potential
variables, parameters, and biases. In this chapter I introduce those factors that are relevant to
learning using the constraint set proposed in Chapter 3, and discuss the impact that each has on
learning the phonotactics of the vowel patterns in the sample languages North Estonian, Finnish,
and North Seto. In particular, I present implementations of two biases that are entirely novel to this
learning context: (a) a persistent bias that prioritizes specific over general faithfulness constraints,
adapted from Hayes’s (2004) Favour Specificity principle (originally proposed for a batch learner)
and (b) several versions of an initial bias that prioritizes general over specific markedness constraints,
one in particular adapted from Albright and Hayes (2006).

In Section 5.1 I introduce the factors that are assumed to remain constant, present learning results
given these foundational assumptions, and discuss challenges to be overcome from this starting point.
Although there are a number of different obstacles that contribute to the difficulty of learning these
languages in the context of their typology, they are not all immediately obvious. Therefore each of
Sections 5.2, 5.3, and 5.4 introduces a particular learning bias that is applied in order to address an
already-identified problem, while simultaneously uncovering more subtle obstacles not previously
apparent. Section 5.2 investigates the implementation of the specific-over-general faithfulness bias,
which facilitates privileging first-syllable vowels but reveals that faithfulness constraints are never-
theless promoted too high. Section 5.3 focuses on options for varying the promotion rate applied at
each learning update, which tempers the dramatic climb of the faithfulness constraints but shows
that overly specific markedness generalizations are being learned in some cases. Section 5.4 explores
the implementation of the general-over-specific markedness bias, which prioritizes more restrictive
(more general) markedness constraints over less restrictive ones. Finally, in Section 5.5, I summarize
all of the learning simulations performed with various combinations of values for the biases intro-
duced in the preceding sections and generalize a set of ideal conditions for learning these Finnic
languages.

For reference, Figures 5.1, 5.2, and 5.3 reproduce the Hasse diagrams representing target grammars
for North Estonian, Finnish, and North Seto originally depicted in Figures 3.2, 3.3, and 3.4. Each
node (whether containing just one constraint or a group of constraints) is assigned a particular
colour so that the final rankings in the learning results that follow can be easily compared to the
target grammars. Recall that the constraints in the grey nodes are not crucially ranked with
respect to any of the others. Readers may refer to Figure 3.1 to review in more detail the general
structure and colour-coding schema used in the Hasse diagrams for all three languages.
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5.1. Learning simulations with default settings
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Figure 5.1: Overall North Estonian rankings
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Figure 5.2: Overall Finnish rankings

5.1 Learning simulations with default settings

The Gradual Learning Algorithm (GLA), as specified by Boersma and Hayes (2001) and discussed
in Sections 4.1.2 and 4.2, describes the general procedure for this type of gradual, error-driven
learning. The bare bones of the learning algorithm as described lay the foundation for additional
potential parameters or biases to be included.

5.1.1 Learning parameters/biases assumed to remain constant

For the purposes of this project, there are a number of parameters that I considered allowing to vary,
but ultimately decided to keep constant. These parameters, detailed below, are: initial markedness
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Figure 5.3: Overall North Seto rankings

over faithfulness, demoting all loser-preferring constraints, permitting negative ranking values, and
the organization of the learning simulation into four stages with a total of 20 000 learning trials.

The first of these determines whether all constraints have the same initial ranking values or if
faithfulness constraints should start lower than markedness constraints. I consistently apply a low-
faithfulness bias in these simulations.40 The bias toward low initial faithfulness is widely used in
the learning literature, as it helps to ensure that the acquired grammar is as restrictive as possible;
that is, it mitigates the Subset Problem (Angluin, 1980; Baker, 1979). Readers can find more
detailed discussion in, e.g., Gnanadesikan (1995); Hayes (2004); Jesney and Tessier (2011); Prince
and Tesar (2004); Smolensky (1996). The default implementation of this bias in this project is to
set the initial ranking value of faithfulness constraints to be 0, and that of markedness constraints
to be 100. There are some other biases discussed in later parts of this chapter that will set initial
markedness values to be different from the default; however, these will continue to preserve the
overarching low-faithfulness bias.

The second parameter that will remain constant is that of demotion eligibility; that is, whether all
loser-preferring constraints get demoted at each learning update, or just the undominated ones. In
all learning simulations, I demote all loser-preferring constraints rather than choosing to run some
simulations in which only the undominated ones get demoted. Boersma and Hayes (2001) find
that demoting only undominated loser-preferrers cause the GLA to fail on their test data. On the
other hand, Magri (2012) shows that demoting all losers can prevent the learner from converging
efficiently. Suffice it to say that even if choosing to demote all loser-preferrers may affect the learner’s
ability to converge efficiently, it will not affect whether or not the learner converges at all.

The third constant is the number of learning trials, which is fixed at 20 000 for each simulation.
All simulations described herein converged well before iterating through this many trials, providing
a long enough timeline to ensure that even the odd later error (caused by a particularly noisy

40I also ran a small number of exploratory simulations in which faithfulness constraints experience a more persistent
downward bias, being demoted at regular intervals through the learning process. However, these experiments did not
produce any promising results so I set the notion of “gravity” aside and did not pursue it any further.
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5.1. Learning simulations with default settings

evaluation) did not affect the overall ranking.

The fourth parameter that will remain constant is permitting constraints to take on negative ranking
values. It is possible for a constraint to prefer a loser and therefore be eligible for demotion even if
it already has a ranking value of 0. In some learning situations a drop into negative ranking values
is not permitted. However, since I am working with ranked (classic OT) rather than weighted (e.g.
Harmonic Grammar) constraints, there is no particular concern associated with negative ranking
values; all ranking values are converted to relative ordinal rankings at evaluation so the actual
numerical values themselves are irrelevant. For example, the values {θ(C1) = 100, θ(C2) = 50}
produce the exact same ranking as the values {θ(C1) = −25, θ(C2) = −32}. Given this fact, the
default OTSoft (Hayes et al., 2013) approach for GLA learning is used; that is, to permit demotion
of constraints even when the resulting ranking value is negative.

The last few parameters that are held constant across simulations are the organization of learning
trials into stages, as well as evaluation noise and the plasticity function. Recall that noise is
the standard deviation of the normal distribution centred at each constraint’s ranking value (used
for perturbing the ranking values at evaluation time) and that plasticity is the amount added to
or subtracted from each constraint’s value during an update. Detailed definitions of each are in
Section 4.2. Based on pilot simulations run early on in this project, none of the results I discuss
appear to depend on changes to these settings, so I use the default OTSoft (Hayes et al., 2013)
assumptions for noise, evenly-distributed learning trials, and decreasing plasticity in GLA learning;
they are summarized in Table 5.1.

Parameter Stage 1 Stage 2 Stage 3 Stage 4

Number of learning trials 5 000 5 000 5 000 5 000
Evaluation noise 2 2 2 2
Plasticity 2 0.2 0.02 0.002

Table 5.1: Invariant settings for GLA learning.

5.1.2 Simulation results - default parameters

Here and throughout the rest of this chapter, all sections presenting simulation results will follow
the same general structure. First, I define the parameter settings for the learner. Next, I summarize
in a table the average success of the learner on each of the three sample languages. Finally, I present
detailed results and discuss final rankings for each of the individual languages.

Note also that for each new parameter introduced throughout the chapter, I show an example of its
application first on its own, then in combination with previous parameters. Some settings for each
parameter produce better results than others, of course, but for the purpose of illustrating each
parameter’s effect without getting bogged down with granular details I select just one setting for
each option. Once all of the parameters have been defined, Section 5.5 considers the results from
the full crossing of parameter settings.

Initial learning simulations use all of the basic parameters (those described in Section 5.1.1) at their
default settings, with no additional biases or parameters introduced. Learner A is defined with the
settings in Table 5.2.

Under these default conditions, learning simulations for all three sample languages fail to acquire
the target grammars, producing instead fully-faithful grammars. Such grammars succeed 100% of
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5.1. Learning simulations with default settings

Learner A: Parameter Setting

All basic parameters Default
• low initial faithfulness (0) / high markedness (100)
• demote all loser-preferring constraints
• permit negative ranking values
• evaluation noise = 2
• 20 000 learning trials per simulation, split into 4 stages
• plasticity = 2, 0.2, 0.02, 0.002

through Stages 1 to 4, respectively

Table 5.2: Parameter settings for Learner A.

the time on the input forms, since I assume idempotence. However, they are very poorly equipped
to deal with illicit test forms (such as the “excluded sequences” shown in Tables 4.1, 4.2, and 4.3).
Test results are summarized in Table 5.3. Here, and throughout the rest of the chapter, these results
are calculated as per the evaluation procedure described in Section 4.4.1.41 The tests are performed
with inputs comprising both possible and impossible vowel sequences in each language. Results and
final rankings for each individual language are discussed in more detail below.

Language Average rate of correct outputs (%)

North Estonian 24.55%
Finnish 26.83%

North Seto 29.84%

Table 5.3: Summary of results from simulations with Learner A.

Below and throughout the rest of this chapter, I present the final ranking values for selected con-
straints in each language, in order to illustrate the particular successes or problems of each learning
simulation without overwhelming the reader with all seventy-four constraint values. As a reminder,
in each of these tables, the same colour schemes are used as in the Hasse diagrams in Figures 5.1,
5.2, and 5.3.

(112) The desired relative orderings are always as shown:
inventory gaps unranked VH

Id-σ1(Bk)
positional restrictions crucial VH

Id(Bk) Id(Bk)
other M constraints other M constraints

In addition, I separate individual rows of the tables using one of three options (the probabilities
given here are from Table 4.5):

• A heavy solid line between rows means that the constraint values are separated by at least
12 and are therefore at least 99.999% likely to maintain the same ranking relationship after
evaluation noise is applied.

41Recall that any results better than approximately 0.9 are based on the evaluations of n = 100 tests, whereas
those below 0.9 are based on only n = 5 tests.

74



5.1. Learning simulations with default settings

• A double dashed line between rows means that the constraint values are separated by at least
4 and are therefore at least 92.135% likely to maintain the same ranking relationship after
evaluation noise is applied.

• No line between rows means that the constraint values are separated by less than 4 and are
therefore less than 92.135% likely to maintain the same ranking relationship after evaluation
noise is applied.

North Estonian: The final ranking values for a selection of crucial constraints, after learning from
simulated North Estonian inputs, are shown in Table 5.4. Id(Bk) has risen to the top of the rankings,
producing a grammar that does not align with the crucial rankings proposed in Section 3.2.2. The
target rankings require:

*B1 >> Id-σ1(Bk) >> *F3, *B2 >> Id(Bk)

Constraint Final ranking value

Id(Bk) 116

*B5F3 104
*B5∞F3 104

*B1 104
*F3 102
*B2 102

*F5B2 100
*F5∞B2 100

Id-σ1(Bk) 92

Table 5.4: Excerpt of final ranking values for North Estonian after simulation with Learner A.

Once general faithfulness is highest-ranked, no further learner trials will cause any errors. Due to
the fact that these learners receive positive evidence only, the fully-faithful candidate will always
be the intended winner and no further updates will be made to the grammar.

Finnish: Table 5.5 shows the final ranking values for a selection of crucial constraints, after learning
from simulated Finnish data. Id(Bk) is at the top of this grammar too, meaning that it does not
achieve the crucial rankings proposed in Section 3.2.3. The target rankings require:

*B2 >> Id-σ1(Bk) >> Id(Bk)

*F3B5, *F3∞B5, *B5F3, *B5∞F3 >> Id(Bk)

North Seto: Learning from simulated North Seto data results in final ranking values for a selection
of crucial constraints shown in Table 5.6. Id(Bk) has once again risen to the top; the resulting
grammar does not meet the crucial target rankings proposed in Section 3.2.4. The target rankings
require:

Id-σ1(Bk) >> *B1 >> Id(Bk)

*F4B5, *F4∞B5, *B5F4, *B5∞F4 >> Id(Bk)
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5.1. Learning simulations with default settings

Constraint Final ranking value

Id(Bk) 116
*B2 110

*F3∞B5 106
*B5∞F3 106
*F3B5 104
*B5F3 104

Id-σ1(Bk) 80

Table 5.5: Excerpt of final ranking values for Finnish after simulation with Learner A.

Constraint Final ranking value

Id(Bk) 116
*F4B5 106

*F4∞B5 106
*B5∞F4 106

*B1 102
*B5F4 100

Id-σ1(Bk) 96

Table 5.6: Excerpt of final ranking values for North Seto after simulation with Learner A.

5.1.3 Discussion

There are several obstacles that must be addressed on the way to acquiring better – even excellent –
final grammars. However, in the results shown above in Section 5.1.2, not all of the challenges are
apparent; some only become clear as the initial problems are resolved. In this section I discuss those
that are immediately identifiable, and leave the others to be discussed and addressed in subsequent
sections of this chapter.

With respect to the results presented in Section 5.1.2, the most glaring problem is that Id(Bk) is
highest ranked in all three grammars. This means that during the learning process, Id(Bk) rises
all the way from its initial value of 0, past all of the markedness constraints starting at 100, to the
very top of the rankings. Such grammars are fully faithful and therefore overgenerate to the point
of excluding nothing. That is, any vowel is permitted anywhere in the word (whether in an initial
syllable or not), and any co-occurrence of vowels (whether harmonic or disharmonic) is likewise
permitted, since there are no markedness constraints above Id(Bk) to enact any pressure to the
contrary. In other words, we see none of the desired features of of these languages: inventory gaps,
positional neutralization, or harmony.

The reason for Id(Bk)’s rise all the way to the top of the rankings is that there is no obligation (or
even tendency) for Id-σ1(Bk) to outrank Id(Bk), which is problematic particularly under assumption
of idempotence. Each time the learner encounters an error, Id(Bk) is always a winner-preferring
constraint, since the underlying form is assumed to be identical to the heard surface form. The
Elementary Ranking Conditions (ERC) matrix in (113) shows that for an observed form such as
/o...A/ (grammatical in all three of the sample languages), Id(Bk) is a winner-preferrer for any error
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5.2. Specific-over-general faithfulness bias

and Id-σ1(Bk) is a winner-preferrer for only those errors involving the first syllable. Thus an error
in the first syllable will result in promotion of both faithfulness constraints, but any error past the
first syllable will result in promotion of only the general one. Since a crucial element of all three
sample languages’ target grammars is for Id-σ1(Bk) to outrank Id(Bk), this ranking will never be
achieved and the learner will only stop making errors once Id(Bk) has been promoted all the way
to the top of the rankings.

(113) ERC matrix demonstrating that under assumption of idempotence, all learning errors have
Id(Bk) as a winner-preferring constraint.
input winner ∼ loser Markedness constraints Id(Bk) Id-σ1(Bk)
/o...A/ o...A ∼ o...æ . . . W e
/o...A/ o...A ∼ ø...A . . . W W
/o...A/ o...A ∼ ø...æ . . . W W

Addressing the relative ranking of specific vs general faithfulness constraints is not the only obstacle
to successful learning of grammars for the sample languages. However, as it is the only one apparent
under the learning conditions presented in Section 5.1, it must be addressed before any others can
be revealed. Section 5.2 presents two possible solutions to this problem.

5.2 Fspec >> Fgen bias

The constraint set that I use for this project includes only two faithfulness constraints, Id(Bk) and
Id-σ1(Bk), the first applying more broadly and the second in a narrower context. When two such
versions of a faithfulness constraint exist, it is possible to construct a grammar in which marked
elements in underlying forms surface only in privileged contexts. For example, recall the constraint
*F3, which is violated by vowels in set F3 = {æ, ø, y}. Then the ranking

Id-σ1(Bk) >> *F3 >> Id(Bk)

bans vowels in set F3 in general, but permits them in initial syllables.

A specific-over-general faithfulness bias (Fspec >> Fgen) is a strategy that can help find the most
restrictive grammar that accounts for the input data, avoiding a superset (overgenerating) grammar
(Hayes, 2004; Tessier, 2007). I explore two slightly different approaches to this idea: one is to define
a set minimum distance by which the specific faithfulness constraint must exceed the general one
(referred to as the a priori bias), and the other is to prioritize promotion of the specific constraint
even when the general one could also be promoted (referred to as the Favour Specificity bias). These
two approaches are detailed in Sections 5.2.1 and 5.2.2, respectively, and Section 5.2.3 discusses the
advantage of both being used together.

5.2.1 A priori bias

One approach to the specific-over-general faithfulness bias is to ensure that the ranking value for
the specific version of the constraint is a minimum specified distance higher than that of the general
version. The satisfaction of this bias is enforced persistently through the learning simulation, both
in the initial state and after each individual learning update.
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5.2. Specific-over-general faithfulness bias

5.2.1.1 Rationale

Maintaining a minimum difference between the ranking values of a specific-general pair of faithful-
ness constraints ensures that the specific version of the constraint always has a better opportunity
to claim credit for a particular output form than the general one does, corresponding to a more
restrictive grammar overall.

5.2.1.2 Implementation

The Fspec >> Fgen bias between any specific-general pair of faithfulness constraints can be imple-
mented by means of an a priori bias that ensures θ(Fspec) − θ(Fgen) ≥ d, for some distance d.
Practically, the learner adjusts the initial ranking values such that any two constraints in this type
of relationship are at least d apart, and then does the same after each learning update. I propose
that if the two constraints have a difference of less than d, then it is always the case that the specific
one has its value increased rather than the general one having its value decreased, as the latter
means that faithfulness constraints are only ever promoted when both are violated. OTSoft (Hayes
et al., 2013) sets the default value of this difference to be d = 20, stating that it is “very close
probabilistically to being an obligatory ranking” (Hayes, 2013, p. 24).

In my learning simulations, I test the omission of this bias as well as a range of different d values:
0 (i.e., θ(Fspec) must be no less than θ(Fgen)), 10, 20, 30, and 40.

5.2.1.3 Simulation results - a priori bias

To demonstrate the effect of the a priori bias, I simulate acquisition of the three sample languages
using Learner B, defined with the settings in Table 5.7. The selection of d = 20 for illustrative
purposes is drawn from the OTSoft default as mentioned above. Results using learners with other
values of d are summarized in Section 5.5.

Learner B: Parameter Setting

All basic parameters Default
A priori bias (Fspec >> Fgen) d = 20

Table 5.7: Parameter settings for Learner B.

With the a priori bias set to d = 20, learning simulations for all three sample languages still fail
to acquire the target grammars. The learner trained on North Estonian data produces a grammar
that, while not correct, does have some promising characteristics. On the other hand, the learners
trained on Finnish and North Seto data once again produce fully-faithful grammars. Test results
are summarized in Table 5.8; results and final rankings for each individual language are discussed
in more detail below.

Language Average rate of correct outputs (%)

North Estonian 78.63%
Finnish 28.95%

North Seto 31.33%

Table 5.8: Summary of results from simulations with Learner B.
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5.2. Specific-over-general faithfulness bias

North Estonian: The final ranking values for a selection of crucial constraints, after learning from
simulated North Estonian inputs, are shown in Table 5.9. Several of the crucial relative rankings

*B1 >> Id-σ1(Bk) >> *F3, *B2 >> Id(Bk)

proposed in Section 3.2.2, are met by this grammar. However, one of the key elements – the B1
inventory gap – is missing, by virtue of that fact that the final value of *B1 is not only not at the
top, but below even Id(Bk). Thus the acquired grammar will incorrectly permit the B1 vowel /W/
in initial syllables.

Constraint Final ranking value

Id-σ1(Bk) 129.22

*B2 115.00

*F3 110.22
Id(Bk) 109.22
*B5∞F3 108.00

*B1 108.00
*F5∞B2 106.80
*B5F3 104.00

*F5B2 98.18

Table 5.9: Excerpt of final ranking values for North Estonian after simulation with Learner B.

The ranking acquired by this learner does generally follow the required positional restrictions by
ranking Id-σ1(Bk) >> *F3, *B2 >> Id(Bk); however, the ranking values are close enough together
that the stochastic nature of evaluation results in somewhat variable adherence to these positional
restrictions. For example, the ungrammatical test input /y...æ/ would be expected to surface
as [y...A], neutralizing the restricted vowel in the second syllable. However, during testing, this
grammar selects output candidates with the frequencies shown in Table 5.10.

Candidate Output frequency (%)

Actual Desired

y...æ 35 0
y...A 65 100
u...æ 0 0
u...A 0 0

Table 5.10: Frequency of candidate selection for input /y...æ/ with North Estonian grammar ac-
quired by Learner B. Number of sample evaluations n = 100.

Although the ranking values of the top-ranked constraints are crowded quite close together (with
the stochastic component of evaluation producing variable outputs as in Table 5.10), at least one
success the North Estonian learner achieves is that the learner converges with markedness constraints
between the two faithfulness constraints.
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5.2. Specific-over-general faithfulness bias

Finnish: Table 5.11 shows the final ranking values for a selection of crucial constraints, after
learning from simulated Finnish data. Both faithfulness constraints have risen to the top. The
distance of Id(Bk) above *B2 and the relevant no-disagreement constraints is small enough that
evaluation noise might cause it to swap rankings with one of its neighbours. However, in order to
meet the crucial rankings

*B2 >> Id-σ1(Bk) >> Id(Bk)

*F3B5, *F3∞B5, *B5F3, *B5∞F3 >> Id(Bk)

proposed in Section 3.2.3, such swaps would have to be guaranteed to occur at every evaluation,
which is extremely unlikely given the final ranking values. Hence the final grammar produced by
Learner B on Finnish inputs is more or less fully faithful, since ranking both faithfulness constraints
at the top without any markedness constraints in between is in practice indistinguishable from a
grammar such as the one acquired by Learner A where Id(Bk) is top-ranked alone (with Id-σ1(Bk)
far below). A representative evaluation is shown in Tableau (114).

Constraint Final ranking value

Id-σ1(Bk) 136

Id(Bk) 116

*B5∞F3 112
*F3B5 110

*F3∞B5 110
*B5F3 110
*B2 110

Table 5.11: Excerpt of final ranking values for Finnish after simulation with Learner B.

(114) Sample evaluation of test input /o...æ/ in the Finnish grammar acquired by Learner B. The
grammar selects the faithful candidate [o...æ] as optimal even though it is not harmonic.

/o...æ/ Id-σ1(Bk) Id(Bk) *B5∞F3
(e.g. *B2, *B5F3,
*F3B5, *F3∞B5, . . . )

� a. o...æ ∗
✓ b. o...A ∗!

c. ø...æ ∗! ∗
d. ø...A ∗! ∗∗

In principle it should have been reasonable for Id-σ1(Bk) to end up with a final ranking value
greater than or equal to the top-ranked markedness constraints with Id(Bk) lower down. However,
at the time that Id-σ1(Bk) approaches the highest-ranked markedness constraints (including *B2
with θ(*B2) = 110), the other context-free markedness constraints all have values in [100, 106] and
are therefore within a small enough window for evaluation noise to make (e.g.) *B3 or *F3 active
in selecting the optimal candidate. This results in errors and therefore more updates which push
the faithfulness constraints ever higher. It is only once Id(Bk) surpasses this clump of markedness
constraints that errors taper off and the learner converges.

Table 5.12 shows a select few stages in Finnish Learner B’s learning trajectory highlighting the
proximity of *B3 and *F3 to *B2 as Id-σ1(Bk) rises to the top. The winner ∼ loser notation at

80



5.2. Specific-over-general faithfulness bias

the top of each column indicates that with (e.g.) /e...A...o/ as the input form, [e...A...o] as the
desired (faithful) output, and [e...A...ø] as the optimal candidate selected by the learner’s current
hypothesized grammar, the learner has encountered an error and therefore must update its current
grammar accordingly.

Trial #68 Trial #72 Trial #89
e...A...o ∼ e...A...ø y...y...ø ∼ y...u...o æ...æ...i ∼ æ...A...i

*B2 110 Id-σ1(Bk) 112 Id-σ1(Bk) 120
Id-σ1(Bk) 108 *B2 110 *B2 110
*B3 106 *B3 108 *B5∞F3 108
*F3 104 *B5∞F3 106 *B3 106
*B1 104 *F3 104 *F3B5 106
*B5∞F3 104 *B1 104 *F3∞B5 106
*F1 102 *F3∞B3 104 *B5F3 106
*F3B3 102 *F3B5 104 *F3 104
*F3∞B3 102 *F3∞B5 104 *B1 104
*F3B5 102 *B5F3 104 *F3∞B3 104
*F3∞B5 102 *F3B3 102 *B5F1 104
*B3∞F3 102 *F4∞B3 102 *B5∞F1 104
*B5F1 102 *B3∞F3 102 *F1 102
*B5∞F1 102 *B5F1 102 *F3B3 102
*B5F3 102 *B5∞F1 102 *B3∞F3 102
*F4 100 *F1 100 Id(Bk) 100
*F5 100 *F4 100 *F4 100
*B5 100 *F5 100 *F5 100
*F4∞B3 100 *B5 100 *B5 100
. . . . . . . . . . . . *F4∞B3 100
Id(Bk) 88 Id(Bk) 92 . . . . . .

Table 5.12: The highest of Finnish Learner B’s constraint ranking values after three different learning
updates. Although the crucial constraints (*B2, Id-σ1(Bk), *F3B5, *F3∞B5, *B5F3, *B5∞F3) are
in reasonably good positions, constraints such as *F1, *F3, *F4, *F5, *B3, *B5 are near enough to
be potentially disruptive.

North Seto: Table 5.13 shows the final ranking values for a selection of crucial constraints, after
learning from simulated North Seto data. Similar to the Finnish results, both faithfulness constraints
have risen to the top. Though the markedness constraints are correctly ordered relative to each
other, the relative positions of the faithfulness vs the markedness constraints are not correct with
respect to the crucial rankings proposed in Section 3.2.4. The target rankings require:

Id-σ1(Bk) >> *B1 >> Id(Bk)

*F4B5, *F4∞B5, *B5F4, *B5∞F4 >> Id(Bk)

Again, the final grammar produced by Learner B on North Seto inputs is essentially fully faithful
(due to both faithfulness constraints being at the top), with similar learning challenges as described
for Finnish.

In the next section, I introduce a second possible approach to the Fspec >> Fgen. Following that,
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Constraint Final ranking value

Id-σ1(Bk) 136

Id(Bk) 116

*F4∞B5 110
*B5∞F4 110
*F4B5 108
*B5F4 108

*B1 104

Table 5.13: Excerpt of final ranking values for North Seto after simulation with Learner B.

results from both Section 5.2.1 and Section 5.2.2 are discussed in Section 5.2.4.

5.2.2 Favour Specificity

This section proposes an alternative to the fixed, enforced a priori bias explored above. The
underlying idea for the Favour Specificity bias is to allow the specific faithfulness constraint to
rise independently of the general one, similar to the Favour Specificity principle that Hayes (2004)
introduces for the Low-Faithfulness Constraint Demotion algorithm. Although that proposal focuses
on a different algorithm, the same principle can be adapted to apply to the GLA as well.

5.2.2.1 Rationale

As discussed in 5.2.1, setting an a priori bias helps specific faithfulness constraints stay above their
general counterparts. However, because each violation of a first-syllable faithfulness constraint is
also necessarily a violation of a general faithfulness constraint, there is no opportunity for the specific
constraint to ever rise any further above the general version than the a priori bias specifies. That
is, it is always the case that either the pair of constraints is moving in tandem (if there is an error
in the first syllable only) or the general constraint is “pushing” the specific one up from below (if
there is at least one error in a non-initial syllable). Both of these scenarios have the same effect:
the specific constraint does not ever move independently of the general one. Recall the ERC matrix
in (113) for an illustration of this phenomenon.

This type of movement, where specific and general constraints are separated by what is effectively
a constant distance, can cause a challenge for the learner in that the d value that is specified for the
a priori bias may or may not be large enough for other necessary constraints and/or interactions
to “fit” between the two faithfulness constraints, depending on the target grammar. For instance,
suppose the target grammar has crucial rankings M1 >> F1 >> F2 >> M2, and the learner is set to
its task with a fixed difference (e.g., d = 20 between the two faithfulness constraints) assigned to the
a priori bias. The F1 >> F2 relationship will be effectively categorical, which is sufficient for this
grammar. However, suppose the target grammar has instead crucial rankings F1 >> M1 >> F2 >
> M2. In this case, d = 20 does not create enough space: the constraints in either of the crucial
rankings F1 >> M1 or M1 >> F2 (or both) will have ranking values close enough that evaluation
noise will create some variability in surface forms. Conversely, attempting to solve this problem
by arbitrarily setting the a priori bias to be larger can cause other issues instead (for example, it
would prevent the learning of a target grammar where F1 >> M1 >> F2 but M1 must be variably
interchangeable with both F1 and F2).
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5.2. Specific-over-general faithfulness bias

To address this challenge, I test an alternate approach (Favour Specificity) that allows the space
between specific and general counterparts to change, depending on the kinds of errors that are made.
Both the Favour Specificity and the a priori bias are ultimately combined in Section 5.2.3.

5.2.2.2 Implementation

As always, when a learning error triggers an update to the constraint ranking values, the relevant
ERC is inspected for winner-preferring vs loser-preferring constraints. In this case, if both the
specific and the general version of a particular faithfulness constraint are eligible for promotion (i.e.,
both prefer the winner), then only the specific one gets promoted. In (115a), Id-σ1(Bk) does not
prefer the winner so Id(Bk) is promoted. In (115b) and (115c), both Id(Bk) and Id-σ1(Bk) prefer
the winner and only Id-σ1(Bk) is promoted.

(115) ERC matrix showing that Id(Bk) is promoted when and only when Id-σ1(Bk) does not
prefer the winner.
input winner ∼ loser Markedness constraints Id(Bk) Id-σ1(Bk)
a. /o...A/ o...A ∼ o...æ . . . W ↑ e
b. /o...A/ o...A ∼ ø...A . . . W ��↑ W ↑
c. /o...A/ o...A ∼ ø...æ . . . W ��↑ W ↑

There is also a set of optional variations to this implementation, in which the a priori bias (if any;
see Section 5.2.1) increases if the current θ(Fspec) − θ(Fgen) difference is greater than d. However,
pilot simulations testing these variations did not produce promising results, so they will not be
discussed further. Rather, I focus on just the basic version of the Favour Specificity bias.

5.2.2.3 Simulation results - Favour Specificity

To demonstrate the effect of the Favour Specificity bias, I simulate acquisition of the three sample
languages using Learner C, defined with the settings in Table 5.14.

Learner C: Parameter Setting

All basic parameters Default
Favour Specificity bias (Fspec >> Fgen) Active

Table 5.14: Parameter settings for Learner C.

With the Favour Specificity bias applied, learning simulations for all three sample languages still
fail to acquire the target grammars. Once again, the grammar acquired by the learner trained on
North Estonian is a significant improvement over the one acquired by Learner A, but the Finnish
and North Seto grammars are essentially fully faithful. Test results are summarized in Table 5.15,
along with the final ranking values of Id-σ1(Bk) and Id(Bk). Results and final rankings for each
individual language are discussed in more detail below.

It is clear from the final values of Id(Bk) and Id-σ1(Bk) that Favour Specificity has a much greater
impact on North Estonian than on Finnish or North Seto; this benefit is discussed below. Addi-
tionally, based solely on its average rate of correct outputs, North Seto Learner C appears to have
shown some improvement over Learner A. However, this is in fact a statistically convenient side
effect of final ranking values that are no better from a theoretical perspective; further explanation
is provided below.
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Language
Average rate of
correct outputs
(%)

Final faithfulness
ranking values

North Estonian 89.98% Id-σ1(Bk) 124; Id(Bk) 70
Finnish 26.96% Id-σ1(Bk) 116; Id(Bk) 112

North Seto 46.95% Id-σ1(Bk) 118; Id(Bk) 114

Table 5.15: Summary of results from simulations with Learner C.

North Estonian: The final ranking values for a selection of crucial constraints, after learning from
simulated North Estonian inputs, are shown in Table 5.16. As for Learner B, several of the crucial
relative rankings

*B1 >> Id-σ1(Bk) >> *F3, *B2 >> Id(Bk)

proposed in Section 3.2.2 are met by this grammar. The issue of the inventory gap is still relevant –
*B1 is still not at the top of the rankings – but at least it is above Id(Bk).

Constraint Final ranking value

Id-σ1(Bk) 124.00

*F3 112.00
*B2 112.00

*B5∞F3 110.00

*F5∞B2 106.00
*B5F3 106.00
*B1 106.00

*F5B2 104.00

Id(Bk) 70.00

Table 5.16: Excerpt of final ranking values for North Estonian after simulation with Learner C.

There is also a great deal more space between Id-σ1(Bk) and Id(Bk), allowing for more-categorical
relationships between the constraints of interest. For example, when given the ungrammatical test
input /y...æ/, this grammar selects the intended output [y...A] in 100% of test evaluations, as shown
in Tableau (116) (compared with only 65% correct for Learner B where Id-σ1(Bk) and Id(Bk) were
separated by d = 20, as shown in Table 5.10).

(116) Sample evaluation of test input /y...æ/ in the North Estonian grammar acquired by Learner
C (with ranking value shown for each constraint). The grammar successfully selects the
candidate without a marked F3 vowel in the second syllable.
/y...æ/ Id-σ1(Bk): 124 *F3: 112 *B1: 106 Id(Bk): 70

a. y...æ ∗∗!
� b. y...A ∗ ∗

c. u...æ ∗! ∗ ∗
d. u...A ∗! ∗∗
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Finnish: Table 5.17 shows the final ranking values for a selection of crucial constraints, after
learning from simulated Finnish data. Once again, both faithfulness constraints have risen to the
top and the final grammar does not meet the crucial rankings proposed in Section 3.2.3. The target
rankings require:

*B2 >> Id-σ1(Bk) >> Id(Bk)

*F3B5, *F3∞B5, *B5F3, *B5∞F3 >> Id(Bk)

Rather, the final grammar produced by Learner C on Finnish inputs is more or less fully faithful.

Constraint Final ranking value

Id-σ1(Bk) 116

Id(Bk) 112
*F3∞B5 110
*B5∞F3 110
*B5F3 108
*B2 108

*F3B5 104

Table 5.17: Excerpt of final ranking values for Finnish after simulation with Learner C.

North Seto: Table 5.18 shows the final ranking values for a selection of crucial constraints, after
learning from simulated North Seto data. Similar to the Finnish results, both faithfulness constraints
have risen to the top. As for Learner B, though the markedness constraints are correctly ordered
relative to each other, the relative positions of the faithfulness vs the markedness constraints are not
correct with respect to the crucial rankings proposed in Section 3.2.4. The target rankings require:

Id-σ1(Bk) >> *B1 >> Id(Bk)

*F4B5, *F4∞B5, *B5F4, *B5∞F4 >> Id(Bk)

Constraint Final ranking value

Id-σ1(Bk) 118.00
Id(Bk) 114.22
*F4∞B5 112.00
*B5∞F4 112.00
*F4B5 110.00
*B5F4 110.00
*B1 108.02

Table 5.18: Excerpt of final ranking values for North Seto after simulation with Learner C.

As noted earlier in this section (with reference to Table 5.15), the average rate of correct results is
higher than for the grammar acquired by Learner B, even though the final ranking values show a
constraint ordering that appears to be fully faithful. This difference is due to the spacing between
constraints– in particular, Id(Bk) vs *B1 and the crucial VH constraints (*F4∞B5, *B5∞F4, *F4B5,
and *B5F4). In the final grammar acquired by Learner C, all of the constraints are much closer
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together and therefore the stochastic evaluation is more likely to result in Id(Bk) occasionally
swapping places with one or more of the markedness constraints, generating outputs that obey
markedness (vowel harmony and/or positional restrictions) rather than faithfulness pressures.

The next section investigates the combination of the two Fspec >> Fgen biases as tested thus far,
and overall evaluation of all possible combinations of settings is addressed in Section 5.5.

5.2.3 Simulation results - a priori and Favour Specificity

The results presented in Sections 5.2.1 and 5.2.2 show that the Favour Specificity bias is more useful
than the a priori bias for North Estonian. It facilitates enough space between the faithfulness
constraints for *F3 and *B2 to settle in between, in order to ensure that the vowels in those sets
are restricted in non-initial syllables.

With respect to North Seto, in both sets of results *B1 is too low to be active, but were it to have
risen higher it would similarly need to be sandwiched in between the two faithfulness constraints.
Similar to North Estonian, the a priori bias on its own does not result in quite enough space.
However, the Favour Specificity on its own seems to result in even less.

If combined, the Favour Specificity bias and the a priori bias have the potential to both (a) facilitate
growth in the amount of space between the faithfulness constraints and (b) set a lower bound on the
size of that space in order to avoid Id(Bk) encroaching on Id-σ1(Bk) in case of errors in non-initial
syllables.

In this section I briefly present results from a learner with both of these biases applied. I simulate
acquisition of the three sample languages using Learner D, defined with the settings in Table 5.19.

Learner D: Parameter Setting

All basic parameters Default
A priori bias (Fspec >> Fgen) d = 20
Favour Specificity bias (Fspec >> Fgen) Active

Table 5.19: Parameter settings for Learner D.

With both of these biases applied, learning simulations for all three sample languages still fail to
acquire the target grammars, producing similar results to those from Learners B and C. Test results
are summarized in Table 5.20; results and final rankings for each individual language follow.

Language Average rate of correct outputs (%)

North Estonian 90.00%
Finnish 33.67%

North Seto 63.00%

Table 5.20: Summary of results from simulations with Learner D.

North Estonian: The final ranking values for a selection of crucial constraints, after learning from
simulated North Estonian inputs, are shown in Table 5.21.

Finnish: Table 5.22 shows the final ranking values for a selection of crucial constraints, after
learning from simulated Finnish data.
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Constraint Final ranking value

Id-σ1(Bk) 128

*F5∞B2 116
*B2 116

*F3 112
*F5B2 110

*B5∞F3 108
*B1 106

*B5F3 104

Id(Bk) 80

Table 5.21: Excerpt of final ranking values for North Estonian after simulation with Learner D.

Constraint Final ranking value

Id-σ1(Bk) 134.01

Id(Bk) 114.01
*B2 112.00

*F3∞B5 110.00
*B5F3 108.00

*B5∞F3 108.00
*F3B5 106.00

Table 5.22: Excerpt of final ranking values for Finnish after simulation with Learner D.

North Seto: Table 5.23 shows the final ranking values for a selection of crucial constraints, after
learning from simulated North Seto data.

Although none of these results are meaningfully different from those of Learners B or C, I will be
using both together in subsequent simulations, in order to ensure both a minimum distance between
faithfulness constraints, and the ability to expand that distance where motivated by first-syllable
errors.

5.2.4 Discussion

The application of the a priori bias enables the learner to produce grammars in which specific
faithfulness constraints are ranked higher than their general counterparts. In the context of Finnic
languages, such a bias facilitates the kind of first-syllable privilege that languages in this typology
require– whether to ensure that neutralization only occurs in non-initial syllables (as for North
Estonian) or to allow for harmony to be driven by the first syllable (as for Finnish and North Seto).

The Favour Specificity bias has a similar effect, but is more flexible, allowing specific faithfulness
constraints to rise independently of their general counterparts. However, without a minimum re-
quired distance between the specific and general faithfulness constraints, there are situations in
which this results in a more crowded sequence of final ranking values (for example, North Seto
Learner C). This means a more variable final grammar, in a learning context where variability is
not a desired characteristic of the target grammar.
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Constraint Final ranking value

Id-σ1(Bk) 136.06

Id(Bk) 116.06
*F4∞B5 116.00
*B5∞F4 116.00
*B5F4 114.00
*F4B5 112.00

*B1 102.00

Table 5.23: Excerpt of final ranking values for North Seto after simulation with Learner D.

Even with the degree of success shown by the North Estonian Learners B and C, it is clear that
neither of these biases (or even both together) is enough for successful learning of the sample
languages. A particular obstacle that recurs consistently in the simulations discussed throughout
Section 5.2 is that most of the markedness constraints do not shift away from their initial values to
any great degree (Figure 5.4). There are a number of reasons for this, which are discussed below, but
the overarching consequence is that most of the relative rankings between the various markedness
constraints do not have the opportunity to become anywhere near categorical. With constantly
shifting markedness pressures and steadily rising faithfulness constraints, the learner cannot deter-
mine which markedness constraints to credit with any successful outputs and is only able to start
selecting the intended winners as optimal once the faithfulness constraints have surpassed the chaos
of the markedness constraints. After that point, since the learners receive only positive evidence, the
faithfulness constraints continue to get credit for any winners, rendering the markedness constraints
effectively useless.
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5.2. Specific-over-general faithfulness bias

Figure 5.4: Distribution of final markedness constraint ranking values for Learners D (all markedness
constraints were initialized at 100).

(a) Distribution of final markedness constraint ranking values for North Estonian Learner D.

(b) Distribution of final markedness constraint ranking values for Finnish Learner D.

(c) Distribution of final markedness constraint ranking values for North Seto Learner D. 89
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Due to the nearsightedness of the GLA and the use of positive evidence only, markedness constraints
that are never violated by the learning data (e.g., *B5∞F3 in Finnish) are highly unlikely to ever
be violated by a generated output; the only way this would happen is due to evaluation noise. Thus
they have negligible opportunity to be promoted as a result of such an error. Ideally, to compensate,
the other markedness constraints would instead fall from their initial values. However, that turns
out to be unlikely as well. For example, the symmetrical properties of *F5 and *B5 result in these
two constraints staying quite steady relative to each other, and also fairly close to their initial value,
as errors that promote one demote the other and vice versa;42 see (117). The rest of the context-free
scale referring constraints *Fm and *Bn, while not perfectly symmetric, are antagonistic enough to
result in approximately similar behaviour.

(117) Violation profile for a sample learning error with North Seto input.
/u...o/ *B5 *F5 . . . Id-σ1(Bk) Id(Bk)
✓ a. u...o ∗∗ . . .
� b. u...ø ∗L ∗W . . . ∗W

As for the no-disagreement constraints, there is a slightly different issue at play. The vowel harmony
constraints that are often violated and should be inactive in the target grammar do get demoted as
errors are made in which they prefer the intended losers. For example, consider *F5B5 in Finnish.
Since /i/ and /e/, both in set F5, are transparent in Finnish, such a constraint is violated by many
of the learning inputs (e.g., /u...i...o/) and is therefore demoted when it contributes to an error. For
example, (118a) and (118b) show examples of the kinds of errors that demote *F5B5 in Finnish, as
desired.

(118) ERC excerpts for errors demoting *F5B5 in Finnish.
input winner ∼ loser *F5 *B5 *F5B5
a. /e...A/ e...A ∼ e...æ W L L
b. /u...i...o/ u...i...o ∼ u...i...ø W L L

But, given the complexity of this constraint set, there are other forces re-promoting these types
of constraints. For example, consider again *F5B5 in Finnish. As mentioned above, it does get
demoted when it contributes to an error. On the other hand, it is also often promoted as a side
effect of updates related to other errors, to such an extent that much of the downward movement
is cancelled out. (119a) and (119b) show examples of such errors, assuming faithfulness to the first
syllable.

(119) ERC excerpts for errors “accidentally” promoting *F5B5 in Finnish.
input winner ∼ loser *F5 *B5 *F3B5 *F5B5
a. /i...ø/ i...ø ∼ i...o L W e W
b. /æ...ø/ æ...ø ∼ æ...o L W W W

In (119a), both candidates are grammatical but only the intended winner is faithful to the input.
Therefore when the learner selects the loser as optimal in order to avoid violating the currently-
highly-ranked *F5, the update promotes *F5B5 even though it had nothing to do with the selection
of the winner and is in fact very reasonable to violate in Finnish.

42In this constraint set, the only possible repair for markedness violations is to change the backness of a vowel.
Hence, avoiding a violation of (e.g.) *F5 means incurring a violation of Id(Bk) and therefore also of *B5.
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In (119b), the learner again selects the loser in order to avoid violating *F5. In this case, the
resulting promotion of *F5B3 is desired. But due to the no-disagreement constraints being built
up from the nested stringency sets, the loser’s violation (and resulting promotion) of *F5B3 also
necessarily means promotion of superset-referring *F5B5.

Whether considering the context-free markedness constraints or the no-disagreement constraints,
either way we run the risk of producing a strictly faithful grammar (which accounts for all of
the learning data but no potential unfaithful test data) if the general faithfulness constraint is
permitted to rise above the markedness constraints as their values oscillate. The need for more
space between the (ideally) higher-ranked markedness constraints and the lower ones is hindered by
their oscillation, but can be facilitated by defining a learner with asymmetry between its promotion
vs demotion amounts. The idea is for ERCs such as those in (118) to be more influential than those
in (119). This adaptation – a modified update rule – is presented in Section 5.3.

5.3 Promotion rate

GLA-type learners make adjustments to the ranking values after each error made by the current
hypothesized grammar. While all variations on this theme agree that constraint demotion is neces-
sary to the learning process, arguments have been made both for (e.g., Boersma, 1997, 1998; Magri,
2012) and against (e.g., Tesar & Smolensky, 1998) the idea of permitting constraint promotion as
well. I subscribe to Magri’s (2012) claim that some promotion must be required in order to allow
for re-ranking of faithfulness constraints which, in a learning environment that assumes faithful
underlying forms for licit inputs, never prefer losers.

As Magri (2012) does, I determine the promotion amount for winner-preferring constraints as a
fraction of the current plasticity. E.g.,

promotion amount = (promotion rate)× plasticity (5.1)

where promotion rate is a fraction determined as a function of the number of winner-preferring
and/or loser-preferring constraints at that update.

5.3.1 Rationale

At the low end, a promotion rate of 0 means that initially low faithfulness constraints would remain
stuck at their starting values; they need some way to rise to allow for adjustments to rankings as
new learning inputs are encountered. At the high end, a promotion rate of 1 (or more) means that
every winner-preferring constraint is given full credit for preference of the winner. However, we
should consider avoiding full-fledged promotion of constraints in the case of an ERC that contains
two or more constraints that prefer the intended winner, in order to avoid overpromoting when it
is not clear which of those constraints should be credited with preference of the winner (the Credit
Problem; Dresher, 1999). Between these two extremes, Magri (2012) argues that different ranges
of promotion rates have been shown to result in efficient convergence, inefficient convergence, or
non-convergence of a GLA-type learner; see Figure 5.5. The value that delineates these ranges is
shown by Magri to be the ratio l/w, where w = number of winner-preferring constraints43 and l =
number of loser-preferring constraints (these variables will be used in calculations of promotion rate
throughout this section).

43With reference to the Favour Specificity bias defined in Section 5.2.2, note that even when the winner-preferring
Id(Bk) is not promoted, it does still count toward w, the total number of winner-preferring constraints.
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0 l/w 1

efficient convergence no convergence

inefficient convergence

Figure 5.5: Convergence and efficiency depend on promotion rate (adapted from Magri, 2012 (66),
p. 265).

The goal, then, is to select a function for promotion rate ∈ (0, 1) and ideally ∈ (0, l/w),44 such that
the greater the number of constraints to be promoted, the smaller the promotion amount. Various
options have been tested and are detailed in Section 5.3.2.

5.3.2 Implementation

At each learning update, the numbers of winner-preferring and loser-preferring constraints are de-
termined from the relevant ERC. The ranking values of the loser-preferrers are decreased by the
plasticity amount, and those of the winner-preferrers are increased by the promotion rate as a frac-
tion of the plasticity. The default value for promotion rate is 1 (that is, promotion amount is equal
to plasticity). I also consider four different promotion rates as functions of the number of loser-
and/or winner-preferring constraints; they are described below. All four of these promotion rates
are ∈ (0, l/w) (proofs in Appendix A.1.1) and therefore satisfy Magri’s (2012) requirements for
efficient convergence.45

Magri (2012) proposes a calibrated46 promotion rate:

(120) Type 1: promotion rate = l/(1 + w)

However, this particular rate has the potential to produce fractions greater than one, meaning that
constraints could be promoted by an even larger amount than they are demoted. This goes against
the general goal of avoiding overzealous promotion of winner-preferring constraints (i.e., the Credit
Problem) as discussed in Section 5.3.1.

I test three additional options for a tempered promotion rate, each guaranteed to produce a fraction
no greater than one (proofs in Appendix A.1.1):

(121) Type 2: promotion rate = l/(l + w)

(122) Type 3: promotion rate = 1/w

(123) Type 4: promotion rate = 1/(1 + w) (Magri & Kager, 2015)

Figure 5.6 shows, for w, l ∈ [1, 10], how the promotion rates vary as calculated by each of the
four promotion rate functions above (and starting with the default, constant promotion rate of 1).

44Figure 5.5 implies that 0 < l/w < 1, but in fact this is only true if l < w. So it is not possible to make a
generally applicable statement about whether l/w or 1 is the tighter upper bound. At any rate, I aim to satisfy both
requirements.

45Except for 1/w (Type 3), which has a very slightly higher bound and is instead ∈ (0, l/w].
46As per Magri (2012), a calibrated promotion rate is one that is < l/w.
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The default promotion rate, Type 3, and Type 4 do not depend on l and therefore only have one
possible outcome for each w value. Types 1 and 2 depend on both w and l; therefore each of the
corresponding plots shows ten different possible outcomes for each w value. Although the range
of values included for w and l are merely for illustrative purposes and do not hold any particular
significance with respect to the ERCs involved in these simulations, these plots are intended to help
the reader visualize the degree of consistency resulting from each choice of promotion rate type.

Figure 5.6: Varying promotion rate through five different types (default and 1 through 4), as a
function of w and l.

5.3.3 Simulation results - promotion rate

To demonstrate the effect of a tempered promotion rate, I simulate acquisition of the three sample
languages using Learner E, defined with the settings in Table 5.24. The choice of 1/w for the promo-
tion rate is for illustrative purposes and is strictly based on the simplicity of the expression rather
than any other factor. Results using learners with the other types are summarized in Section 5.5.

Learner E: Parameter Setting

All basic parameters Default
Promotion rate 1/w

Table 5.24: Parameter settings for Learner E.

With the modified promotion rate applied – even without the initial help of the specific-over-
general faithfulness bias – the results for the vowel harmony languages (and especially Finnish) are
an improvement on those from earlier learners. Results are summarized in Table 5.25. Detailed
commentary on each language follows, and a bigger-picture summary of the effects of tempered
promotion rate is discussed in Section 5.3.5.

However, inspection of the final ranking values reveals some interesting details not conveyed in these
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Language Average rate of correct outputs (%)

North Estonian 62.64%
Finnish 90.98%

North Seto 73.27%

Table 5.25: Summary of results from simulations with Learner E.

summary results. These details are discussed below, language by language.

North Estonian: The final ranking values for a selection of crucial constraints, after learning from
simulated North Estonian inputs, are shown in Table 5.26.

Constraint Final ranking value

*B5F3 100.15
*B5∞F3 100.15
*F5B2 100.00

*F5∞B2 100.00
*B1 100.00

Id(Bk) 75.55

Id-σ1(Bk) 53.30

*B2 48.88

*F3 −17.03

Table 5.26: Excerpt of final ranking values for North Estonian after simulation with Learner E.

The final grammar shows that this learner, due in part to only having access to positive evidence,
has “misunderstood” North Estonian to be a vowel harmony language. With the modified promotion
rate ensuring that demotions are larger than promotions, the restricted vowels in non-initial syllables
are accounted for by no-disagreement constraints (*F5B2, *F5∞B2, *B5F3, *B5∞F3) rather than
context-free constraints (*F3, *B2). This happens because the no-disagreement constraints are
never violated by the learning data (and therefore almost never move), while the relevant context-
free constraints are violated quite often, specifically by vowels in the first syllable (and therefore
move downward anytime such a first-syllable vowel is encountered). The ERC matrix in (124) shows
that when the input happens to contain two relatively unmarked back vowels (/u...A/), both *F3
and *B5F3 are winner-preferring and therefore promoted, but when the input sequence contains a
marked front vowel (/y...æ/), *F3 is demoted while *B5F3 does not move.

(124) ERC matrix comparing inputs with marked vs unmarked vowels in the initial syllable.
input candidates Id-σ1(Bk) Id(Bk) *F3 *B5F3 *B5
/u...A/ u...A ∼ u...æ e W W W L
/y...A/ y...A ∼ u...A W W L e W

*B1 does successfully implement an inventory gap as required, but the loose vowel harmony attested
by this grammar is not driven by faithfulness to the first syllable; rather, it is driven by general
faithfulness over all segments in the word. Even if the first-syllable faithfulness was ranked higher,
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interpreting North Estonian as a vowel harmony language rather than one with broader positional
restrictions would mean that vowels in sets F3 and B2 are banned only when following a vowel
of the opposite backness. Hence patterns such as [y...æ] are deemed acceptable even though such
sequences are not attested in North Estonian; see Tableau (125).

(125) Sample evaluation of test input /y...æ/ in the North Estonian grammar acquired by Learner
E. The grammar selects the candidate in which both vowels are front (i.e., the harmonic
candidate), even though it has a vowel in set F3 in a non-initial syllable.
/y...æ/ *B5F3 *B5∞F3 Id(Bk) Id-σ1(Bk) *F3

� a. y...æ ∗∗
✓ b. y...A ∗! ∗

c. u...æ ∗! ∗ ∗ ∗ ∗
d. u...A ∗!∗ ∗

Finnish: Table 5.27 shows the final ranking values for a selection of crucial constraints, after
learning from simulated Finnish data. As for several of the previous learners, the key markedness
constraints are at the top of the rankings, but in this case both faithfulness constraints are signifi-
cantly lower than the inventory gap *B2 and the F3/B5 vowel harmony constraints. This grammar
does almost exactly what is needed for Finnish: it completely bans vowels in set B2 (/W, 7/) and
ensures the required harmony and transparency patterns among the remaining vowels. However,
similar to the North Estonian result, it does so in a way that is not governed by context-specific
(initial syllable) faithfulness. Therefore winners are always harmonic, but whether they are back or
front is determined by either general faithfulness (the harmonic candidate with fewer faithfulness
violations is preferred over a different harmonic candidate with more faithfulness violations47) or,
if faithfulness violations are equal, then by other lower-ranked markedness constraints (whether
context-free or no-disagreement) that should not ideally be active. Tableaux (126) and (127) show
examples of each of these cases.

Constraint Final ranking value

*B2 101.30
*F3B5 100.00

*F3∞B5 100.00
*B5F3 100.00

*B5∞F3 100.00
(several other unviolated VH constraints) 100.00

Id(Bk) 64.90

*F1 55.04

Id-σ1(Bk) 42.66

Table 5.27: Excerpt of final ranking values for Finnish after simulation with Learner E.

47This non-attested pattern is known as Majority Rule harmony (Baković, 2000; Lombardi, 1999).
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(126) Sample evaluation of test input /ø...o/ in the Finnish grammar acquired by Learner E. The
grammar selects the candidate with fewer violations of *F1 even though it is not faithful to
the first syllable, nor should such a constraint be active in this language.
/ø...o/ *F3B5 *F3∞B5 *B5F3 *B5∞F3 Id(Bk) *F1 Id-σ1(Bk)

a. ø...o ∗! ∗ ∗
✓ b. ø...ø ∗ ∗!∗

c. o...ø ∗! ∗ ∗∗ ∗ ∗
� d. o...o ∗ ∗

(127) Sample evaluation of test input /ø...A...u/ in the Finnish grammar acquired by Learner E.
The grammar selects the candidate with fewer overall violations of Id(Bk) even though it
is not faithful to the first syllable. Disharmonic candidates are omitted from this tableau
for the sake of simplicity, since they are ruled out immediately by the highest-ranked no-
disagreement constraints.
/ø...A...u/ *F3B5 *F3∞B5 *B5F3 *B5∞F3 Id(Bk) *F1 Id-σ1(Bk)
✓ a. ø...æ...y ∗∗! ∗
� b. o...A...u ∗ ∗

North Seto: Table 5.28 shows the final ranking values for a selection of crucial constraints, after
learning from simulated North Seto data. The key vowel harmony constraints are successfully at
the top of the rankings, ensuring the required harmony and transparency patterns. The positional
restriction *B1 is also below Id-σ1(Bk) as it should be; however, because the general faithfulness
constraint is above the specific one, two problems arise. First, winners are always harmonic but their
backness is determined by general faithfulness before first-syllable faithfulness; see Tableau (128).
Second, *B1 is too far down to have the opportunity to be active, so there is in effect no restriction
on non-initial syllables; see Tableau (129).

Constraint Final ranking value

*B5F4 100.29
*B5∞F4 100.29
*F4B5 100.00

*F4∞B5 100.00

Id(Bk) 70.30

Id-σ1(Bk) 50.99

*B1 43.98

Table 5.28: Excerpt of final ranking values for North Seto after simulation with Learner E.
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(128) Sample evaluation of test input /æ...W...7/ in the North Seto grammar acquired by Learner
E. The grammar selects the candidate with fewest overall violations of Id(Bk) even though
it both contains a non-initial [W] and is not faithful to the first syllable. Disharmonic
candidates are omitted from this tableau for the sake of simplicity, since they are ruled out
immediately by the highest-ranked no-disagreement constraints.
/æ...W...7/ *F4B5 *F4∞B5 *B5F4 *B5∞F4 Id(Bk) Id-σ1(Bk) *B1

✓ a. æ...i...e ∗∗!
� b. A...W...7 ∗ ∗ ∗

c. A...i...7 ∗∗! ∗

(129) Sample evaluation of test input /W...W/ in the North Seto grammar acquired by Learner
E. Since the input is already harmonic, the grammar selects the candidate with the fewest
faithfulness violations, even though [W] is restricted and should not appear in the second
syllable.
/W...W/ *F4B5 *F4∞B5 *B5F4 *B5∞F4 Id(Bk) Id-σ1(Bk) *B1

� a. W...W ∗∗
✓ b. W...i ∗! ∗

c. i...W ∗! ∗ ∗
d. i...i ∗!∗ ∗

5.3.4 Simulation results - Fspec >> Fgen and promotion rate

To demonstrate the combined effects of the a priori bias, Favour Specificity bias, and tempered
promotion rate, I simulate acquisition of the three sample languages using Learner F, defined with
the settings in Table 5.29. As before, these specific settings are used for illustrative purposes; overall
evaluation is presented in Section 5.5.

Learner F: Parameter Setting

All basic parameters Default
A priori bias (Fspec >> Fgen) d = 20
Favour Specificity bias (Fspec >> Fgen) Active
Promotion rate 1/w

Table 5.29: Parameter settings for Learner F.

With all three of these modifications implemented, the results show improvement yet again compared
to those from prior learners. Results are summarized in Table 5.30; results and final rankings for
each individual language are discussed in more detail below.

Language Average rate of correct outputs (%)

North Estonian 88.53%
Finnish 100.00%

North Seto 99.97%

Table 5.30: Summary of results from simulations with Learner F.

At this point, the grammar acquired by the Finnish learner is achieving 100% success on tests, the

97



5.3. Promotion rate

North Seto grammar nearly so, and the North Estonian grammar is performing quite well but with
some room for improvement. Final rankings for this learner are presented and analyzed below.

North Estonian: The final ranking values for a selection of crucial constraints, after learning
from simulated North Estonian inputs, are shown in Table 5.31. For comparison, recall the crucial
rankings from Section 3.2.2:

*B1 >> Id-σ1(Bk) >> *F3, *B2 >> Id(Bk)

The final rankings of Learner F improve those of Learner D (which had the same settings minus
the tempered promotion rate) in that *B1 is at the top, implementing an inventory gap. They also
improve those of Learner E in that Id-σ1(Bk) outranks Id(Bk), ensuring faithfulness to the vowel in
the first syllable. However, although *B2 is sandwiched between the two faithfulness constraints as
required, the North-Estonian-as-a-vowel-harmony-language problem still persists with highly ranked
*F5B2, *F5∞B2, *B5F3, and *B5∞F3, while *F3 is below general faithfulness and therefore inactive
(though Id(Bk) and *F3 are close enough in ranking value to swap places some of the time due to
evaluation noise). Tableaux (130) and (131) show how vowels in set B2 are appropriately restricted
in non-initial syllables but those in set F3 may not be.

Constraint Final ranking value

*F5B2 100.00
*F5∞B2 100.00
*B5F3 100.00

*B5∞F3 100.00
*B1 100.00

Id-σ1(Bk) 70.98

*B2 60.80

Id(Bk) 39.15
*F3 37.63

Table 5.31: Excerpt of final ranking values for North Estonian after simulation with Learner F.

(130) Sample evaluation of test input /A...7/ in the North Estonian grammar acquired by Learner
F. The grammar successfully selects the candidate that avoids [7] in the second syllable.
/A...7/ *F5B2 *F5∞B2 *B5F3 *B5∞F3 Id-σ1(Bk) *B2 Id(Bk) *F3

a. A...7 ∗!
� b. A...e ∗

c. æ...7 ∗! ∗ ∗ ∗ ∗
d. æ...e ∗! ∗∗

98



5.3. Promotion rate

(131) Sample evaluation of test input /y...ø/ in the North Estonian grammar acquired by Learner
F. The grammar selects the candidate in which both vowels are front, even though it has a
vowel in set F3 in a non-initial syllable.
/y...ø/ *F5B2 *F5∞B2 *B5F3 *B5∞F3 Id-σ1(Bk) *B2 Id(Bk) *F3

� a. y...ø ∗∗
✓ b. y...o ∗! ∗

c. u...ø ∗! ∗ ∗ ∗ ∗
d. u...o ∗! ∗∗

Finnish: Table 5.32 shows the final ranking values for a selection of crucial constraints, after
learning from simulated Finnish data. This grammar meets all the requirements for a target Finnish
grammar, shown in full in Figure 5.2 and with these crucial highest rankings:

*B2 >> Id-σ1(Bk) >> Id(Bk)

*F3B5, *F3∞B5, *B5F3, *B5∞F3 >> Id(Bk)

The ranking values are far enough apart in value to behave effectively categorically, as evidenced
by the 100% rate of correct outputs during testing.

Constraint Final ranking value

*B2 100.80
*F3B5 100.00

*F3∞B5 100.00
*B5F3 100.00

*B5∞F3 100.00

Id-σ1(Bk) 68.96

Id(Bk) 43.48

Table 5.32: Excerpt of final ranking values for Finnish after simulation with Learner F.

North Seto: Table 5.33 shows the final ranking values for a selection of crucial constraints, after
learning from simulated North Seto data. This grammar meets all the requirements for a target
North Seto grammar, namely:

Id-σ1(Bk) >> *B1 >> Id(Bk)

*F4B5, *F4∞B5, *B5F4, *B5∞F4 >> Id(Bk)

However, some pairs of ranking values are just close enough together that evaluation noise results in
the odd swapped ranking. For example, *B1 is about 8 below Id-σ1(Bk) and thus there are a small
number of instances where inputs with a (perfectly reasonable) first-syllable /W/ surface with an [i]
instead, due to a temporary ranking of *B1 >> Id-σ1(Bk) at evaluation time. See Tableau (132).
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Constraint Final ranking value

*F4B5 100.00
*F4∞B5 100.00
*B5F4 100.00

*B5∞F4 100.00

Id-σ1(Bk) 70.29

*B1 62.38

Id(Bk) 44.22

Table 5.33: Excerpt of final ranking values for North Seto after simulation with Learner F.

(132) Sample evaluation of input /W...o/ in the North Seto grammar acquired by Learner F, when
*B1 and Id-σ1(Bk) are stochastically swapped at evaluation. The grammar incorrectly
selects the candidate without the marked vowel /W/.
/W...o/ VH constraints *B1 Id-σ1(Bk) *B1F5 Id(Bk)
✓ a. W...o ∗!
� b. i...o ∗ ∗

c. i...ø ∗ ∗∗!

5.3.5 Discussion

Modifying the update rule by adjusting the learning algorithm’s promotion rate serves to create
space between markedness constraints by ensuring that any oscillating constraint values oscillate on
an overall downward trajectory (at least in this case). For a constraint set such as this one, where
the use of stringency sets entails the existence of pairs of antagonistic – or near-antagonistic –
constraints, this facilitates the differentiation of constraints whose values stay relatively stable due
to never being violated by the positive-evidence learning inputs (such as *B5F3 in Finnish) versus
constraints whose values stay relatively stable as a result of oscillation due to repeated violation
(such as *F5 and *B5 in any of the sample languages).

The effects of the tempered promotion rate can be understood via comparison of either Learner A
with Learner E, or Learner D with Learner F, for any language. See Table 5.34 for a summary of
references to earlier results tables, along with overall success rates for each learner. Comparing the
final rankings of those learners reveals that with the modified promotion rate, markedness constraints
maintain enough relative height that they can be active in accounting for the patterns attested in the
input data, rather than leaving that work entirely to the faithfulness constraints. This is facilitated
by virtue of the markedness constraints’ relative rankings becoming clearly articulated enough to
reduce the error rate, before faithfulness constraints rise so far as to overcome the markedness
constraints.

For the vowel harmony languages, Finnish and North Seto, Learner F achieves near-perfect results.
However, for North Estonian with its positional restrictions, Learner F acquires a grammar that
accounts for the systematic absence of certain vowels from non-initial syllables via no-disagreement
constraints rather than context-free markedness constraints. This occurs because these particular
no-disagreement constraints are never violated, while the context-free constraints are part of the
antagonistic collection of constraints that oscillate downward due to their repeated violation by
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Learner Settings Results

North Estonian Finnish North Seto

A Default 24.55% 26.83% 29.84%
Table 5.4 Table 5.5 Table 5.6

E Default + 62.64% 90.98% 73.27%
Promotion rate Table 5.26 Table 5.27 Table 5.28

D Default + 90.00% 33.67% 63.00%
A priori + Table 5.21 Table 5.22 Table 5.23
Favour Specificity

F Default + 88.53% 100.00% 99.97%
A priori + Table 5.31 Table 5.32 Table 5.33
Favour Specificity +
Promotion rate

Table 5.34: References to earlier results tables, for the reader’s convenience.

the learning data. The problem with such a result is that the no-disagreement constraints are too
specific: they account perfectly well for the input data but fail to generate correct outputs when
given ungrammatical test data. The vowels in non-initial syllables need to be restricted not only
when they are disharmonic with the vowel in the initial syllable, but also even when they happen
to harmonize with it. This is in essence a restrictiveness problem: in the same way that prioritizing
specific faithfulness constraints over general ones allows for a more restrictive grammar, it is clear
here that more general markedness constraints need to be prioritized over more specific ones in
order to ensure better restrictiveness in terms of markedness as well.

There is a wide range of potential strategies for prioritizing generality in markedness constraints; in
Section 5.4 I propose several options for implementing such a bias and present results of one novel
implementation.

5.4 Mgen >> Mspec

My constraint set does not have any explicitly defined pairs of specific vs general markedness
constraints like it does faithfulness constraints. However, it is nevertheless possible to determine
the relative generality of various pairs of markedness constraints, a task that is made easier due
to the fact that all of the markedness constraints refer to the same stringency scales (for example,
*B1 is more specific than *B2 since B1 ⊂ B2). Using a general-over-specific markedness bias works
toward the same goal as the specific-over-general faithfulness bias: learning a grammar that is as
restrictive as possible.

5.4.1 Rationale

Learners E and F have difficulty learning a correct ranking for Northern Estonian because the vowel
harmony (no-disagreement) constraints are able to explain the limited vowels in non-initial syllables
in the learning data without also incurring violations elsewhere like the context-free segmental
constraints do. Although the context-free constraints are sometimes violated (specifically, by vowels
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in the first syllable), in fact they are much more general and can better deal with ungrammatical
inputs than the no-disagreement constraints can. The more general constraints make the grammar
more restrictive, which is useful for avoiding overgeneration when encountering ungrammatical
inputs.

The rationale for a general-over-specific markedness bias is to give the most general markedness
constraints an opportunity to get credit for the phonotactics of the target grammar, in order to
ensure maximal restrictiveness.

The preference for more general markedness constraints is not persistent. Rather, I implement
it as an initial articulated hierarchy of markedness constraint values that can be freely reversed
by learning data. Such a hierarchy can be determined either by a set-theoretic approach or as a
function of each constraint’s rate of application in a sample set of inputs, both of which options are
described in Section 5.4.2.

5.4.2 Implementation

Within the scale-referring markedness constraints central to this project, there are several dimen-
sions on which generality can be measured, informed by set theory. Using these dimensions, one
can determine the relative place of various markedness constraints in the initial ranking values.

• Dimension 1: size of stringency set.

– Dimension 1a: size of stringency set (absolute). E.g., *B5 is more general than *B2,
because it bans the whole class of back vowels rather than just two of them.

– Dimension 1b: size of stringency set (in context). E.g., *B5F5 is more general than
*B5F2, because it bans back vowels followed by any of the five front vowels rather than
by either of just two of them.

• Dimension 2: context-sensitivity. E.g., *B5 is more general than *B5F2 and *B5∞F2, because
it bans all instances of back vowels, not just when they precede a front vowel from set F2.

• Dimension 3: scope of application: E.g., *B5∞F2 is more general than *B5F2, because it bans
all sequences including an earlier back vowel from set B5 and a later front vowel from set F2,
not just when they are in adjacent syllables.

Using these dimensions, it is straightforward to establish dozens of intersecting generality-based
hierarchies of markedness constraints. However, it is very difficult to determine how the constraints
in those separate hierarchies should interleave in order to create an overall initial distribution of
markedness constraints based on generality. For example, *B5 is more general than *B2, and *B5
is more general than *B5F2, but the relationship between *B2 and *B5F2 is not clear.

Given the difficulty of calculating the overall distribution of markedness based on their set-theoretic
relationships, I propose instead a number of different methods for the learner to determine the
initial relative rankings. Sections 5.4.2.1 and 5.4.2.5 present a uniform and a random distribution,
to use as reference points for the generality-based methods detailed in Sections 5.4.2.2 through
5.4.2.4. The general approach is demonstrated in Section 5.4.3 using one specific implementation,
and assessment of the most effective options is undertaken in Section 5.5.
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5.4.2.1 Uniform distribution function

Distribution Function 1 (F1): The first approach is to assume that all markedness constraints
have the same starting value. This is a baseline that is not informed by relative generality at
all. Within F1, I test three different uniform starting values of 100, 300, and 500. Note that this
distribution function, with a starting value of 100, corresponds to the low-faithfulness bias presented
in Section 5.1.1 and has been the default for assigning initial values to markedness constraints for
all simulations discussed up to this point.

5.4.2.2 Stratified distribution function - by constraint type

Distribution Function 2 (F2): The second approach is to construct discrete strata of markedness
constraints, based on their level of generality from the perspective of constraint type: context-free,
long-distance no-disagreement constraints, and local no-disagreement constraints.

The strata are assigned by F2 as follows:

• Stratum 1 (the highest) contains all context-free markedness constraints. For example, *F1
and *B3.

• Stratum 2 contains all long-distance no-disagreement constraints. For example, *F1∞B2 and
*B2∞F5.

• Stratum 3 (the lowest) contains all local no-disagreement constraints. For example, *F4B2
and *B5F5.

The initial ranking values for the strata must be specified as well. I use 140, 120, and 100 for the
first, second, and third strata, respectively. These values are somewhat arbitrary but are chosen for
two reasons. The first is so that the lowest markedness constraints are still at least as far above the
faithfulness constraints as they are in the default low-faithfulness implementation. The second is
so that the three strata are separated by a difference that is effectively equivalent to a categorical
ranking (i.e., d = 20, as discussed in Section 5.2.1.2 for the a priori bias).

5.4.2.3 Stratified distribution function - by stringency set

Distribution Function 3 (F3): The third approach is to construct discrete strata of markedness
constraints, based on their level of generality from the perspective of the cardinality of the sets
referred to by each constraint. Because all markedness constraints in this project are scale-referring,
it is straightforward to use the front and back vowel sets to assign strata.

In the top-down version of F3 (called F3t), I assign strata greedily, as follows:

• Stratum 1 (the highest) contains all markedness constraints whose largest referenced set has
a cardinality of 5. For example, *B5, *B3F5, and *F1∞B5.

• Stratum 2 contains all markedness constraints whose largest referenced set has a cardinality
of 4. For example, *F4 and *B1∞F4 (recall that B4 is undefined).

• Stratum 3 contains all markedness constraints whose largest referenced set has a cardinality
of 3.

• Stratum 4 contains all markedness constraints whose largest referenced set has a cardinality
of 2.
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• Stratum 5 (the lowest) contains all of the remaining markedness constraints, which are the
ones that refer only to sets with cardinality 1.

In the bottom-up version ofF3 (called F3b), I assign strata greedily, as follows:

• Stratum 5 (the lowest) contains all markedness constraints whose smallest referenced set has
a cardinality of 1. For example, *F1, *B1F4, and *B3∞F1.

• Stratum 4 contains all markedness constraints whose smallest referenced set has a cardinality
of 2. For example, *B2 and *B2F5 (recall that F2 is undefined).

• Stratum 3 contains all markedness constraints whose smallest referenced set has a cardinality
of 3.

• Stratum 2 contains all markedness constraints whose smallest referenced set has a cardinality
of 4.

• Stratum 1 (the highest) contains all of the remaining markedness constraints, which are the
ones that refer only to sets with cardinality 5.

For example, *B4 would be assigned to Stratum 2 (the second-highest) in either version. *F1∞B5,
on the other hand, would be assigned to Stratum 1 in the top-down version (because the largest set
it references contains five vowels) but Stratum 5 in the bottom-up version (because the smallest set
it references contains one vowel).

The initial ranking values of the strata are specified as 180, 160, 140, 120, and 100 for the first
through fifth strata, respectively.

5.4.2.4 Input-calibrated distribution function

Distribution Function 4 (F4): The fourth approach is to calculate the initial ranking values of
markedness constraints via a function with a more finely distributed range. In this case, as men-
tioned at the beginning of section 5.4.2, it is very difficult to use the theoretical relationships between
different types of constraints in order to determine the relative generality of individual pairs of con-
straints. Instead, I use a numerical method based on the observed application rate of each constraint
within the inputs seen by the learner.

Albright and Hayes (2006) present a morphological learning problem for which they propose com-
bined use of their Minimal Generalization Learner (to induce constraints from observed data) with
the GLA (to organize those constraints based on observed data). However, they find that permitting
the GLA to start with all of the induced constraints at the same height results in overly specific
“junk” constraints – rather than more general ones – coming out on top in the final grammar. In
order to address this challenge, they determine an initial ranking based on the generality of the in-
duced constraints (information which is readily available from the induction phase). This approach
ensures that the accidentally unviolated junk constraints start low and stay low, allowing more
general constraints to do the work where possible. I use this idea as inspiration for the definition of
F4, adapting it to a phonological rather than a morphological context, and one where there is no
prior information available about generality.

Recall that in Section 5.1.1 I present the idea of the learning process taking place over four stages,
each with a declining plasticity and consisting of 5 000 learning trials. For the implementation of
this particular bias, I prepend a pre-learning “observation” stage, with plasticity = 0.
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During the observation stage, the learner is fed randomly-sampled inputs just as it is during the
learning stages. However, rather than using the current hypothesized grammar to compare the
optimal output to the intended winner, the learner simply tracks the number of violations for each
markedness constraint in order to calculate an average generality measure gM for each markedness
constraint M . Algorithm 5 describes this process.

Algorithm 5: Markedness generality observation
Initialize a tally for each markedness constraint.
foreach surface form observed by the learner do

Select the violation profile for the faithful candidate.
Add the number of violations of each markedness constraint to the tally.

Divide the tally for each markedness constraint by the total number of trials in this stage.

The generality (or application rate) is one of three parameters used in building the initial distribution
of markedness constraints. Before the first learning stage, the generality is used to calculate the
initial ranking value for each markedness constraint, modifying it from the default value of 100.
The calculation of this distribution requires two additional parameters; these determine:

1. The initial ranking value corresponding to a constraint with generality 0.0. This parameter
is referred to as the y-intercept coefficient. The tested values for the y-intercept coefficient
include 0.5, 1.0, and 1.5.

2. The initial ranking value corresponding to a constraint with generality 1.0. This parameter is
referred to as the slope coefficient. The tested values for the slope coefficient include 0.5 and
1.0.

Then the initial ranking value for each markedness constraint M is calculated using the following
equation:

θ(Minit) = 100 (b+mgM ) ,

where b = y-intercept coefficient ∈ {0.5, 1.0, 1.5}
(determines θ(Minit) for a constraint with gM = 0.0)

m = slope coefficient ∈ {0.5, 1.0}
(determines θ(Minit) for a constraint with gM = 1.0)

gM = generality for constraint M

(5.2)

For example, in the 5 000 randomly-sampled inputs of one North Seto learner’s (Learner G, defined
below in Section 5.4.3) observation stage, initial ranking values for two selected constraints are
calculated as in (133) and (134):

(133) *B5 was violated 6 346 times; therefore:

g(*B5) = 6346÷ 5 000 = 1.2692

θ(*B5) = 100 (b+mgM )

= 100 (1.0 + 1.0 (1.2692))

= 226.92
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(134) *B5F5 was violated 861 times; therefore:

g(*B5F5) = 861÷ 5 000 = 0.1722

θ(*B5F5) = 100 (b+mgM )

= 100 (1.0 + 1.0 (0.1722))

= 117.22

5.4.2.5 Random distribution function

Distribution Function 5 (F5): In addition to having a uniform distribution function F1 as a reference
point against which to consider the success of the other, generality-based markedness distribution
functions, I also ran simulations with markedness constraints randomly distributed over similar
intervals as for F4.

The initial ranking value for each markedness constraint M is calculated using the following equa-
tion:

θ(Minit) = 100 (b+mrM ) ,

where b = y-intercept coefficient ∈ {0.5, 1.0, 1.5}
m = slope coefficient ∈ {0.5, 1.0}
rM = simulated generality for constraint M , randomly sampled from [0, 1]

(5.3)

5.4.3 Simulation results - Mgen >> Mspec

To demonstrate the effect of a general-over-specific markedness bias, I simulate acquisition of the
three sample languages using Learner G, defined with the settings in Table 5.35. The choice of F4

for the distribution function is for illustrative purposes and was selected for its minimal requirement
of a priori knowledge or calculation on the part of the learner, given that the initial distribution of
markedness constraints can be determined based strictly on observation rather than prior analysis
of set-theoretic relationships between classes of markedness constraints. Full results using learners
with F1, F2, F3, and F5 (along with other values of b and m, in the cases of F4 and F5) are
summarized in Appendix C, with discussion of the best performers in Section 5.5.

Learner G: Parameter Setting

All basic parameters Default
Initial markedness values F4 (input-calibrated): b = 1.0,m = 1.0

Table 5.35: Parameter settings for Learner G.

With only the general-over-specific markedness bias applied, the results do not initially appear to
be any better than those of Learner A (default settings). Results are summarized in Table 5.36;
results and final rankings for each individual language are discussed in more detail below.

A closer inspection of the ranking values for each language reveals that some changes are in fact
present, even though their effects are masked in these summary results.

North Estonian: The final ranking values for a selection of crucial constraints, after learning from
simulated North Estonian inputs, are shown in Table 5.37. Due to Learner G’s lack of any of the
other biases discussed thus far, the grammar acquired by the North Estonian learner is simply ruled
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Language Average rate of correct outputs (%)

North Estonian 24.55%
Finnish 26.18%

North Seto 29.82%

Table 5.36: Summary of results from simulations with Learner G.

by a high-ranking general faithfulness constraint. But contrary to several of the previous learners,
the final grammar acquired by Learner G has the more general context-free markedness constraints
*F3 and *B2 ranked significantly higher than the more specific no-disagreement constraints *F5B2,
*F5∞B2, *B5F3, and *B5∞F3, which shows promise in terms of the potential for positional restric-
tions being enforced in their own right, rather than being misattributed to harmony.

Constraint Final ranking value

Id(Bk) 254.00

*F3 216.84

*B2 204.84

*B1 160.00

Id-σ1(Bk) 154.00

*F5B2 100.00
*F5∞B2 100.00
*B5F3 100.00

*B5∞F3 100.00

Table 5.37: Excerpt of final ranking values for North Estonian after simulation with Learner G.

Finnish: Table 5.38 shows the final ranking values for a selection of crucial constraints, after
learning from simulated Finnish data. Similar to the North Estonian results, Id(Bk) is at the very
top of the rankings. The Mgen >> Mspec on its own does not seem to have any great effect on
Learner G’s attempted acquisition of the Finnish target grammar, which is of no particular concern
because Finnish Learner F was already performing quite well and the main goal for this bias is to
address the challenges involved in acquisition of North Estonian. At the very least, this bias does
not appear to have made things any worse for the acquisition of Finnish.

North Seto: Table 5.39 shows the final ranking values for a selection of crucial constraints, after
learning from simulated North Seto data. Id(Bk) is at the top of this ranking as well. Similar to
Finnish, this bias seems not to have made much difference to the North Seto learner, which again is
of no great concern given North Seto Learner F’s good performance and the aim of this bias being
primarily to improve the North Estonian learner.

5.4.4 Simulation results - Fspec >> Fgen, promotion rate, Mgen >> Mspec

To demonstrate the combined effects of the a priori bias, Favour Specificity bias, tempered pro-
motion rate, and general-over-specific markedness bias, I simulate acquisition of the three sample
languages using Learner H, defined with the settings in Table 5.40.
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Constraint Final ranking value

Id(Bk) 254.00

*B2 228.00

Id-σ1(Bk) 178.00

*F3B5 100.00
*F3∞B5 100.00
*B5F3 100.00

*B5∞F3 100.00

Table 5.38: Excerpt of final ranking values for Finnish after simulation with Learner G.

Constraint Final ranking value

Id(Bk) 254.00

Id-σ1(Bk) 210.00

*B1 167.50

*F4B5 100.00
*F4∞B5 100.00
*B5F4 100.00

*B5∞F4 100.00

Table 5.39: Excerpt of final ranking values for North Seto after simulation with Learner G.

Implementing all four of these modifications produces exceptional results, with even the North
Estonian grammar now generating correct outputs in nearly every test evaluation. Results are
summarized in Table 5.41; results and final rankings for each individual language are discussed in
more detail below.

North Estonian: The final ranking values for a selection of crucial constraints, after learning from
simulated North Estonian inputs, are shown in Table 5.42.This grammar meets all the requirements
for a target North Estonian grammar, though some pairs of ranking values are just close enough
together that evaluation noise results in the odd swapped ranking; hence the 99.95% rate of correct
outputs during testing.

Note that at first glance, these rankings may appear to be incorrect. In particular, *F5 outranks
Id(Bk), which would seem to suggest that all front vowels are banned from non-initial syllables.
However, even though the rankings do not precisely match those in 5.1, the relationships between
the front and back scale-referring constraints ensure that the correct patterns surface. This is due
to the fact that *B2 (which contains the back counterparts of the least-marked two front vowels)
outranks *F5. Tableaux (135) and (136) show that, no matter whether a non-initial vowel is in F3,
it will surface correctly due to the interaction of *B2 and *F5.
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Learner H: Parameter Setting

All basic parameters Default
A priori bias (Fspec >> Fgen) d = 20
Favour Specificity bias (Fspec >> Fgen) Active
Promotion rate 1/w
Initial markedness values F4 (input-calibrated): b = 1.0,m = 1.0

Table 5.40: Parameter settings for Learner H.

Language Average rate of correct outputs (%)

North Estonian 99.95%
Finnish 100.00%

North Seto 100.00%

Table 5.41: Summary of results from simulations with Learner H.

(135) Sample evaluation of input /ø...e/ in the North Estonian grammar acquired by Learner H.
The grammar successfully selects the faithful candidate, avoiding second-syllable vowels in
set B2. Candidates unfaithful in the first syllable have been omitted for the sake of simplicity,
due to the high ranking of Id-σ1(Bk).
/ø...e/ *B2 *F5 *F3 Id(Bk)

� a. ø...e ∗∗ ∗
b. ø...7 ∗! ∗ ∗ ∗

(136) Sample evaluation of input /ø...y/ in the North Estonian grammar acquired by Learner H.
The grammar successfully selects the candidate that avoids second-syllable vowels in set F3.
Candidates unfaithful in the first syllable have been omitted for the sake of simplicity, due
to the high ranking of Id-σ1(Bk).
/ø...y/ *B2 *F5 *F3 Id(Bk)

a. ø...y ∗∗! ∗∗
� b. ø...u ∗ ∗ ∗

Finnish: Table 5.43 shows the final ranking values for a selection of crucial constraints, after learn-
ing from simulated Finnish data. This grammar meets all the requirements for a target Finnish
grammar (recall Figure 5.2), and the ranking values are far enough apart in value to behave effec-
tively categorically, as evidenced by the 100% rate of correct outputs during testing.

North Seto: Table 5.44 shows the final ranking values for a selection of crucial constraints, after
learning from simulated North Seto data. This grammar meets all the requirements for a target
North Seto grammar (recall Figure 5.3), and the ranking values are far enough apart in value to
behave effectively categorically, as evidenced by the 100% rate of correct outputs during testing.

5.4.5 Discussion

Applying a general-over-specific markedness bias to a learner’s initial ranking values gives more
general markedness constraints the opportunity to remain active in a grammar being acquired from
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Constraint Final ranking value

*B1 116.40

*F5B2 100.00
*F5∞B2 100.00
*B5F3 100.00

*B5∞F3 100.00

Id-σ1(Bk) 91.87

*F1 82.84
*B2 82.80

*F5 74.59

*F3 67.94

Id(Bk) 41.54

Table 5.42: Excerpt of final ranking values for North Estonian after simulation with Learner H.

Constraint Final ranking value

*B2 133.80

*F3B5 100.00
*F3∞B5 100.00
*B5F3 100.00

*B5∞F3 100.00

Id-σ1(Bk) 91.09

Id(Bk) 57.40

Table 5.43: Excerpt of final ranking values for Finnish after simulation with Learner H.

positive data. For example, Table 5.45 (p. 112) shows both the initial and the final ranking
values from North Estonian Learner H, for a selection of constraints. The more general constraints
with higher initial ranking values have the opportunity to decrease slightly or fall quite drastically,
depending on how often they contribute to learning errors (note the decrease of *F5∞B5 from 170.70
to −88.08, for example).

Without such a bias – if all markedness constraints start with the same value – it is possible for less-
often violated, more specific markedness constraints to get credit for generating the attested patterns
when more-often violated, more general constraints should in fact be the ones held responsible.
North Estonian Learners F vs H provide a clear example of this pair of differing outcomes.

Of course, there are some situations in which the general constraints are truly too general to capture
the patterns of a language. In these cases the errors caused by satisfying those general constraints
trigger updates that demote them, allowing the more specific options to take precedence. The fact
that a general-over-specific relationship is reversible given particular learning data is key to the
success of this bias. For example, North Seto Learner H begins with *B5 at 225.08 and *B1 at
109.38. If these two constraints were to remain in the same relationship throughout the simulation,
it would be impossible to acquire a grammar that bans only the vowels in B1. However, by the end
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Constraint Final ranking value

*F4B5 100.00
*F4∞B5 100.00
*B5F4 100.00

*B5∞F4 100.00
Id-σ1(Bk) 99.39

*B1 89.38

Id(Bk) 56.60

Table 5.44: Excerpt of final ranking values for North Seto after simulation with Learner H.

of the simulation, although *B1 has dropped to 89.38, *B5 has fallen even further to 3.83, ensuring
that *B1 can do its job without interference from the more general constraint.

The combination of all of the biases introduced so far in this chapter – Fspec >> Fgen (a priori and
Favour Specificity), promotion rate, and Mgen >> Mspec, some of which have only been explored
with a narrow set of parameters – produces learners that are able to acquire exceptionally successful
grammars for all three of the sample languages. In Section 5.5 I present results from learners with
a broader range of parameters than the ones specified in Sections 5.2, 5.3, and 5.4, and summarize
the collections of settings that facilitate the most successful results.

5.5 Optimal learning conditions

Sections 5.2, 5.3, and 5.4 explored potential settings for the additional parameters and biases in-
volved in addressing the various challenges encountered by an algorithmic learner with the basic
settings described in Section 5.1. Learning simulations were run with a full crossing of all com-
binations of settings introduced throughout the chapter (1 080 combinations in total). Table 5.46
summarizes these parameters for the reader’s convenience, and a full listing of the results is available
in Appendix C.

The rates of correct outputs for all learning simulations are summarized by the histograms shown in
Figure 5.7 (p. 114). The per-language ranges are 24.53% to 100.00% for North Estonian, 26.16% to
100.00% for Finnish, and 29.80% to 100.00% for North Seto. Although the minima and maxima are
all quite similar from language to language, the distributions within those ranges are quite different,
especially between North Estonian as compared to both Finnish and North Seto. North Estonian,
with positional restrictions and no vowel harmony, has a larger portion of its results in the 60–90%
range than the others do, and a much smaller portion in the 90–100% range. The histograms provide
a very clear illustration of the fact that North Estonian is much more difficult for the learner to get
exactly right.

In this section I examine the best-performing learners and analyze which combinations of parameters
(and ranges of settings for each parameter) produce the best overall results. I also take care to
consider the lowest-performing learners with any of these successful combinations of parameter
settings, to ensure that the settings I deem crucial to success do – as consistently as possible –
guarantee good results.

The success of a learner can be considered from more than one perspective. What follows is dis-
cussion of two different interpretations of what it means to be one of the best-performing learners.
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Initial ranking values Final ranking values

*B5 254.28 *B1 116.40
*F5 228.86 *F5B2 100.00
*F4 182.42 *F5∞B2 100.00
*F5∞B5 170.70 *B5F3 100.00
*B3 159.52 *B5∞F3 100.00
*F5B5 153.64 Id-σ1(Bk) 91.87
*B5∞F5 146.66 *F1 82.84
*B5F5 137.78 *B2 82.80
*F3 133.90 *F5 74.59
*F1 111.80 *F3 67.94
*B2 111.32 *F4 52.15
*B1 100.00 *B5 43.14
*F5B2 100.00 Id(Bk) 41.54
*F5∞B2 100.00 *B3 30.55
*B5F3 100.00 *B5∞F5 −52.16
*B5∞F3 100.00 *B5F5 −55.33
Id-σ1(Bk) 20.00 *F5∞B5 −88.08
Id(Bk) 0.00 *F5B5 −105.14

Table 5.45: A selection of North Estonian Learner H’s constraint ranking values at the beginning
and the end of the learning simulation.

Section 5.5.1 summarizes which specific combinations of learning settings produce the absolute best
results, whereas Section 5.5.2 addresses how generally (that is, with as few specifications as possible)
a learner can be defined and still produce excellent results.

5.5.1 Best-performing individual learners

While none of the 1 080 simulations resulted in grammars that produce correct outputs 100% of the
time for all three languages, there are a small number that achieve extremely close to it. Five of the
learners tested acquired grammars that tested at 99.99% or better, for all three sample languages.
The specifications for these learners are given in Table 5.47; their test results for each language are
shown in Table 5.48. The learners in this set are labeled P, Q, R, S, T; however, these names are
arbitrary and do not imply any particular relationship either to each other or to Learners A through
H as described in Sections 5.1 through 5.4.

A few trends stand out when inspecting the characteristics of these five most successful learners:

(137) Initial markedness distribution:
a. Four of the five use F4 (the input-calibrated general-markedness distribution), with the

fifth using F5 (which also distributes markedness constraints through a range of initial
ranking values, albeit randomly).

b. Four of the five use the same y-intercept and slope settings for creating the distribution
(b = 1.5,m = 0.5).

(138) Four of the five leverage the Favour Specificity bias.48

48On the other hand, only one of these top five learners – Learner P – omits the Favour Specificity bias; however, it
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Parameter Available settings

All basic parameters Default

A priori bias (Fspec >> Fgen) None or d ∈ {0, 10, 20, 30, 40}

Favour Specificity bias (Fspec >> Fgen) Active or inactive

Promotion rate 1 (default)
l/(1 + w)
l/(l + w)
1/w
1/(1 + w)

Markedness distribution F1 (uniform) starting at 100, 300, or 500
function F2 (stratified by constraint type)

F3 (stratified by stringency set),
either top-down or bottom-up

F4 (input-calibrated),
b ∈ {0.5, 1.0, 1.5},m ∈ {0.5, 1.0}

F5 (random),
b ∈ {0.5, 1.0, 1.5},m ∈ {0.5, 1.0}

Table 5.46: All available parameter settings for learners described in this chapter.

a priori
bias (d)

Favour
Specificity

Promotion
rate

Markedness distribution

Function Details

Learner P 40 inactive 1/(1 + w) F4 b = 1.0,m = 0.5
Learner Q 0 active l/(l + w) F4 b = 1.5,m = 0.5
Learner R 30 active 1/w F4 b = 1.5,m = 0.5
Learner S none active l/(l + w) F4 b = 1.5,m = 0.5
Learner T 40 active l/(l + w) F5 b = 1.5,m = 0.5

Table 5.47: Specifications for the five learners whose final grammars achieve a 99.99% success rate.

(139) Three of the five use a promotion rate of l/(l+w). Promotion rate does vary somewhat but
conspicuously does not include either l/(1 + w) or default (1).

To illustrate the overall contribution of these characteristics to successful learning, consider the
lowest success rates (shown in Table 5.49) for any learners whose settings include F4 with b =
1.5,m = 0.5; Favour Specificity; and promotion rate of l/(l + w) (Type 2), 1/w (Type 3), or
1/(1 + w) (Type 4).

If the promotion rate is restricted to only l/(l + w) (Type 2), as is shared by three of the five best
learners, the lower bound for success becomes even better, as shown in Table 5.50.

These results show that even when allowing the a priori bias to vary, this combination of three

is not coincidence that the a priori bias is set quite high for that learner. Both of these biases help to create distance
between the faithfulness constraints, so it stands to reason that if one is left out, the other will have to take on all of
that work.
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Figure 5.7: Distribution of success rates for all learning simulations (1 080 parameter combinations
for each of 3 languages).

North Estonian Finnish North Seto

Learner P 99.99% 100.00% 99.99%
Learner Q 99.99% 100.00% 100.00%
Learner R 99.99% 100.00% 99.99%
Learner S 99.99% 100.00% 99.99%
Learner T 99.99% 99.99% 100.00%

Table 5.48: Results for the five learners whose final grammars achieve a 99.99% success rate.

specifications dependably produces excellent results for Finnish and North Seto, and reasonably
good results for North Estonian. If promotion rate is fixed as well, the North Estonian results join
the others in near-perfect consistency. Therefore choosing settings that align with those in 137, 138,
and 139 defines a learner that is likely to produce excellent results.

It must be acknowledged that the 99.99% benchmark is somewhat arbitrary. While each of the
five learners at or above that cutoff uses F4 to determine initial markedness constraint values, it is
also true that relaxing the cutoff broadens the range of settings seen in the top-performing learners.
For example, lowering the benchmark slightly, to 99.9%, increases the number of top-performing
learners to 71. General trends are summarized in Table 5.51, showing observed vs expected values
for various parameter settings appearing in the top-performing learners. Calculations for expected
values are shown in Appendix A.2.

From Table 5.51 we can conclude that, broadly, the parameter settings that are more likely to
contribute to a learner’s success are a greater a priori bias (d ∈ {30, 40}); an active Favour Specificity
bias; a promotion rate ∈ {l/(l + w), 1/w}; and/or a markedness distribution function that is either
uniform, stratified by constraint type, or calculated based on observed inputs.
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Language Average rate of correct outputs (%)

North Estonian 83.62%
Finnish 100.00%

North Seto 99.95%

Table 5.49: Summary of worst results from simulations with learners defined based on trends from
Learners P, Q, R, S, T. Learners represented in this table have promotion rates of Types 2, 3, and
4.

Language Average rate of correct outputs (%)

North Estonian 98.12%
Finnish 100.00%

North Seto 99.98%

Table 5.50: Summary of worst results from simulations with learners defined based on trends from
Learners P, Q, R, S, T. All learners represented in this table have a promotion rate of Type 2.

Parameter Attested settings in top 71 learners

Setting # observed # expected

A priori bias None 8 11.83
d = 0 8 11.83
d = 10 9 11.83
d = 20 10 11.83
d = 30 17 11.83
d = 40 19 11.83

Favour Specificity bias Active 68 35.50
Inactive 3 35.50

Promotion rate 1 (default) 0 14.20
l/(1 + w) 0 14.20
l/(l + w) 29 14.20
1/w 28 14.20
1/(1 + w) 14 14.20

Markedness distribution F1 15 11.83
F2 8 3.94
F3 8 7.89
F4 28 23.67
F5 12 23.67

Table 5.51: Observed vs expected values for parameter settings appearing in the learners with
success rates greater than 99.9%. Highlighted rows indicate observed > expected.49

49Although observed > expected for F3, the row is not highlighted as the difference is not large enough to be
particularly meaningful.
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There are some more subtle relationships among these settings that can be further teased apart.
First, with respect to the selection of a promotion rate, the three options appearing in the top five
learners specified in Table 5.47 are l/(l+w), 1/w, and 1/(1+w). In fact, these are the smallest three
promotion functions (proofs in Appendix A.1.2). Not only that, but the interaction of all promotion
rate types with a priori d values can be observed from the heat map in Table 5.52. The distribution
of the top 71 learners within this space suggests that less stringent a priori biases produce better
results when paired with l/(l+w), Type 2, but that the larger a priori biases perform better when
paired with 1/w or 1/(1 + w), Types 3 or 4.

a priori (d)

no 0 10 20 30 40

P
ro

m
.

ra
te

1 (default) 0 0 0 0 0 0
l/(1 + w) 0 0 0 0 0 0
l/(l + w) 7 6 6 4 4 2
1/w 1 2 3 4 8 10
1/(1 + w) 0 0 0 2 5 7

Table 5.52: Combinations of promotion types and a priori bias values observed in the top 71 learners
(99.9% or better on all three sample languages).

Second, within the baseline set of uniform initial ranking values F1, starting values of 300 and 500
appear more often than expected, and starting values of 100 appear less often than expected. This
suggests that even if all markedness constraints start with the same value, the simulation is more
likely to succeed if that uniform value is further from the faithfulness constraints.

Finally, consider that there are two main categories of markedness distribution functions: those
that take generality into account (F2, F3, and F4) and those that do not (F1 and F5). Grouped
together in this way, the ones that consider generality are observed in 8 + 8 + 28 = 44 cases (and
expected in 35.5), whereas the ones that do not are observed in 15 + 12 = 27 cases (and expected
in 35.5). Thus zooming out of the individual function types illuminates the fact that incorporating
generality into the initial markedness constraint distribution is also a useful tool.

These results show that, in broad terms, a larger a priori bias is a helpful parameter to include in
a learner acquiring Finnic vowel patterns, as is the Favour Specificity bias, and a promotion rate
of l/(l + w) (Type 2) or 1/w (Type 3). Several different initial markedness constraint distribution
options contribute to learner success; those that initially distribute markedness constraints according
to generality tend to result in acquisition of better final grammars.

Section 5.5.2 considers in a more structured way which generalized combinations of settings are
overall more likely to produce successful results.

5.5.2 Best-performing sets of learners

A slightly different perspective from the one offered in Section 5.5.1 is to ask not only which settings
are common to the most-successful learners, but which combinations of settings can be generalized
as the most crucial to successful learning. For this, rather than keeping the benchmark for success
as high as in Section 5.5.1, I relax it slightly further, to 99%, in order to have more data from which
to attempt to draw generalizations. From the 95 learners that meet this benchmark, I look for
commonalities in their settings and present the sets of successful learners with the fewest specified
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parameters;50 see Table 5.53. The range of results for each language under each of these minimal
generalizations are summarized in Table 5.54.

Favour
Specificity

Promotion
rate

Markedness distribution a priori
bias (d)Function Details

Set X active l/(l + w) F1 300 or 500 any
Set Y any 1/(1 + w) F4 b = 1.5,m = any 40

Table 5.53: Most broadly-encompassing sets of settings drawn from learners with results over 99%.

North Estonian Finnish North Seto

Best Worst Best Worst Best Worst

Set X 100.00% 99.93% 100.00% 100.00% 100.00% 99.93%
Set Y 99.99% 99.45% 100.00% 99.99% 100.00% 99.96%

Table 5.54: Best- and worst-case results for both sets of learners from Table 5.53

The information summarized in Tables 5.53 and 5.54 demonstrates that there are two sets of learners
with comparatively minimal specifications, that produce results consistently better than 99%.

Considering sets of learners in this way, rather than the individual learners as in Section 5.5.1,
provides some insight into the ways that the parameters interact with each other and with the
learning process more generally.

Set X demonstrates that a priori bias is moot when it comes to a learner’s ability to acquire a
target grammar, assuming that Favour Specificity is active, the promotion rate is l/(l + w) (Type
2), and markedness constraints all start quite high (distributed by F1 at 300 or 500). This combina-
tion of parameters suggests that we can avoid considering generality of markedness constraints, as
long as (a) markedness constraints start far enough away from faithfulness constraints, (b) specific
faithfulness constraints are given the opportunity to rise on their own, independent of their general
counterparts, and (c) the promotion rate is not too close to zero.

Set Y, on the other hand, shows that the application (or lack thereof) of Favour Specificity is moot,
as long as the promotion rate is 1/(1+w) (Type 4), the a priori bias has d = 40, and initial values
of the markedness constraints are assigned based on generality (distributed by F4 with b = 1.0).
This combination of parameters suggests that Favour Specificity need not be specified, as long as
the a priori bias is set high enough and the promotion rate is very small.

Both sets of learners assign initial ranking values to markedness constraints that are much higher
above the initial faithfulness constraint values than would be the case in a learner with default
settings. Combined with the cautious promotion rates, this provides the learner with plenty of
time and space to allow the markedness constraints to establish their relative rankings before the
faithfulness constraints rise to the top.

50In other words, I ask how large a class of learners I can define – using the fewest specifications – and still have
all of the learners in that class achieve a success rate of at least 99%.
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5.6 General discussion and conclusion

In this chapter, I introduced three main categories of learning biases that contribute to the success
(or lack of it) of a GLA-type learner acquiring a range of Finnic vowel patterns from North Estonian,
Finnish, and North Seto. The first category was that of specific-over-general faithfulness bias,
including a priori bias and Favour Specificity, the latter of which was novelly adapted for use in
online learning. The second category addressed the update rule’s promotion rate. The third was
a novel implementation of a general-over-specific markedness bias, which included options such as
stratified (determined from constraint structure) and input-calibrated (determined from observed
learning data) initial distributions of markedness constraints. These biases are discussed in more
detail below.

A priori bias: The higher a priori bias values of d = 30 or 40 that turned out to be prevalent in
the most-successful learners mean that each specific faithfulness constraint has a value high enough
above its general counterpart such that their relationship during evaluation is effectively categorical.
This ensures that any vowels in privileged positions (in this case, the initial syllable) are in fact
more likely to remain faithful to their underlying values than vowels elsewhere in the word. For the
Finnic languages, this is absolutely necessary as full contrast (with respect to vowels) in any given
language is only guaranteed in the first syllable. On its own, the a priori bias inevitably results
in each pair of faithfulness constraints moving in lockstep at a distance of no less than 30 (or 40)
apart, since there will always be at least as many faithfulness errors made in the word as a whole
as in the first syllable.

Favour Specificity: The Favour Specificity bias was originally proposed by Hayes (2004) for a
batch learner (Low-Faithfulness Constraint Demotion), and I have presented a novel adaptation of
it to an online learning context. An active Favour Specificity bias works in concert with the a priori
bias to prioritize specific faithfulness constraints over their general counterparts. This particular
setting is implemented via the learner promoting only the specific version of a faithfulness constraint
when adjusting after an error made in which both the specific and general versions are eligible to
be promoted. Such a bias comes with the potential for each specific faithfulness constraint to rise
further above its general counterpart than what the a priori bias requires, since it will not always
be the case that all faithfulness errors result in promotion of the general constraint. In the Finnic
languages, this kind of additional space is important for languages with positional restrictions, which
require context-free markedness constraints against particular sets of vowels to be ranked between
specific and general faithfulness constraints.

Promotion rate: The l/(l + w) (Type 2), 1/w (Type 3), and 1/(1 + w) (Type 4) promotion
rates that appeared in the most-successful learners all fall in the interval (0, l/w) that Magri (2012)
showed to result in efficient convergence of a GLA-type learner. These promotion rates also share a
second important characteristic, which is that they are guaranteed to produce fractions ≤ 1. This
is crucial for ensuring that promotion amounts are no greater than the base plasticity, in order
to remain conservative when giving credit to winner-preferring constraints (the Credit Problem;
Dresher, 1999).

Mgen >> Mspec: The general-over-specific markedness bias was originally proposed by Albright
and Hayes (2006) for a Minimal Generalization Learner that tracks constraint generality during a
constraint induction phase. I have presented a novel implementation is input-calibrated and can
be used by a learner that is presented with already-formulated constraints. Markedness constraints
with initial values distributed by generality help to ensure that more general constraints are given
the opportunity to take credit for a grammar’s phonotactics before specific ones do. These initial
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distributions can be determined either by prior analysis of a constraint’s structure (whether its type
or the stringency sets that it references) or by calculating its application rate from a set of learning
inputs. The latter approach, dependent only on tracking constraint violations in observed data, is
arguably more ecologically valid than the version that requires prior theoretical analysis.

Although all of these approaches have been previously proposed in some form or another, my use of
them in this context both introduces some novel implementations and requires (permits) the biases
to work in concert to define learners that acquire final grammars that nearly perfectly replicate the
targets. The novel implementations that I presented included: (a) a version of Hayes’s (2004) Favour
Specificity principle that can be applied to an online rather than a batch learner; (b) promotion rates
Types 2 and 3, which provide alternative methods for being conservative with respect to the Credit
Problem; and (c) markedness distribution functions F2, F3, and F4 as options for prioritizing
general markedness constraints over specific ones. All three types of these new proposals provide a
crucial service to the learner, which is to ensure that it acquires a maximally restrictive grammar
(Hayes, 2004; Tessier, 2007) and thus avoids falling into the Subset Problem (Angluin, 1980; Baker,
1979).

Section 5.5 summarized the most successful out of a total of 1 080 learners with different parameter
combinations. The wide range of combinations means that there are several potential interactions
among the parameter settings that could lead to dependably good results. This kind of information
would be extremely useful in planning future learning simulations, particularly in terms of being
able to reduce the hypothesis space and prioritize computing time for learners more likely to succeed.
However, beyond the general trends discussed in Section 5.5, detailed analysis of the impact of each
variable (or each combination) is outside the scope of this dissertation. Such tasks are left for future
research.

I conclude this section by revisiting an issue mentioned briefly in Section 3.2.1: the potential
advantages of including MaxIO in the constraint set and therefore deletion as an additional repair
strategy for avoiding disharmonic vowel sequences. In Section 5.2.4 I describe the oscillation of
antagonistic (or near-antagonistic) context-free markedness constraints, which prevents them from
dropping out of the way so that the constraints that should be active in the target grammar can
indeed be active. The reason for the oscillation is that the only possible repair for markedness
violations is to change the backness of a vowel; therefore avoiding a violation of (e.g.) *F5 means
incurring a violation of both Id(Bk) and *B5. When this obstacle first became clear, I ran some
pilot simulations including MaxIO and MaxIO-σ1 in the constraint set, and deletion options in
the candidate sets. My hope in doing so was that the oscillating constraints might be decoupled by
providing repair options that did not only ever change vowel backness.

Unfortunately, while this approach may seem to work from a narrow trial-by-trial perspective, it does
not appear to help in a broader sense (i.e., through an entire learning simulation). At the beginning
of a learning simulation, deletion candidates are selected as optimal the overwhelming majority of
the time, because deleting a vowel (violating an initially low-ranked faithfulness constraint) allows
the current grammar to avoid many different initially high-ranked markedness violations, of both
context-free and no-disagreement constraints. In errors of this kind, *F5 and *B5 (for example,
among many others) are not forced to have opposite winner vs loser preferences. The small subset
of a Finnish ERC matrix in 140 illustrates.
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(140) ERC matrix demonstrating that *F5 and *B5 can move independently of each other when
the loser is a deletion candidate.
input winner ∼ loser *F5 *B5 Id(Bk) MaxIO
/æ...i...æ/ æ...i...æ ∼ æ...i..._ L e e W
/æ...i...A/ æ...i...A ∼ æ...i..._ e L e W

On the other hand, since almost all of the deletion-based errors happen at the beginning of the
simulation, the separation of antagonistic constraints is short-lived: the learner soon figures out
that deletion is not an appropriate tactic. It avoids violating the Max constraints, and in doing so
begins to violate the Ident constraints instead, leaving the antagonistic constraints to oscillate as
usual for remainder of the simulation (see 141).

(141) ERC matrix demonstrating that *F5 and *B5 return to preferring opposite candidates once
MaxIO is no longer being violated.
input winner ∼ loser *F5 *B5 Id(Bk) MaxIO
/æ...i...æ/ æ...i...æ ∼ æ...i...A L W W e
/æ...i...A/ æ...i...A ∼ æ...i...æ W L W e

It is certainly possible for the problematic constraints to drop far enough, and fast enough, to
facilitate the desired interactions between the ideal top-ranked markedness constraints and the
Ident constraints (for example, in pilot Finnish learning simulations). However, such movement
is not guaranteed, as was the case in pilot North Estonian simulations where many markedness
constraints remained crowded near their initial values, paving the way for faithfulness constraints
to rise too far (see Table 5.55). This persistent challenge means that introducing deletion as an
alternate repair is likely not a good strategy for use as a more widely-applicable tool.

Constraint Final ranking value

MaxIO-σ1 114.00
MaxIO 112.00

Id-σ1(Bk) 112.00

*B1 100.00
*B5F3 100.00

*B5∞F3 100.00
*F5B2 100.00

*F5∞B2 100.00

Id(Bk) 92.00
*F1 92.00
*B2 92.00

*F3 76.00

Table 5.55: Excerpt of final ranking values for North Estonian after simulation with pilot deletion
learner.
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