Necessary biases for algorithmic learning of Kihnu Estonian vowel harmony

Kaili Vesik

KIHNU ESTONIAN VOWEL HARMONY

Kihnu Estonian (KE) is one of just a few Estonian varieties with VH (front-back, progressive).

- Inventory: /i, e, æ, y, ø, Υ , a, u, o/
- Alternating: /y/-/u/, /æ/-/a/, $/e/-/\gamma/$
- Transparent: /i/ \bullet

Front harmonic	Back harmonic	Disharmonic
yhes (one.sg.ine)	puhast (clean.sg.part)	*yhys, *puhæst
tekijæ (doer.sg.nom)	tulinx (hot.sg.nom)	* tekija, *tuline
elæsime (live.1pl.pst)	olimy (be.1pl.pst)	*elæsimy, *olime

CONSTRAINT SETS

Kiparsky & Pajusalu⁶ (K&P) propose constraints to account for Balto-Finnic harmony typology:

- IDσ₁(Bk)
- ***x**
- ID(Bk) • *æ, *ø, *y
- VH(a, a, y) = Agr(Bk) & *a, *a, *a, *yAgree(Bk)

Conjoined "VH(x)" constraints ban disharmony involving vowel(s) x.

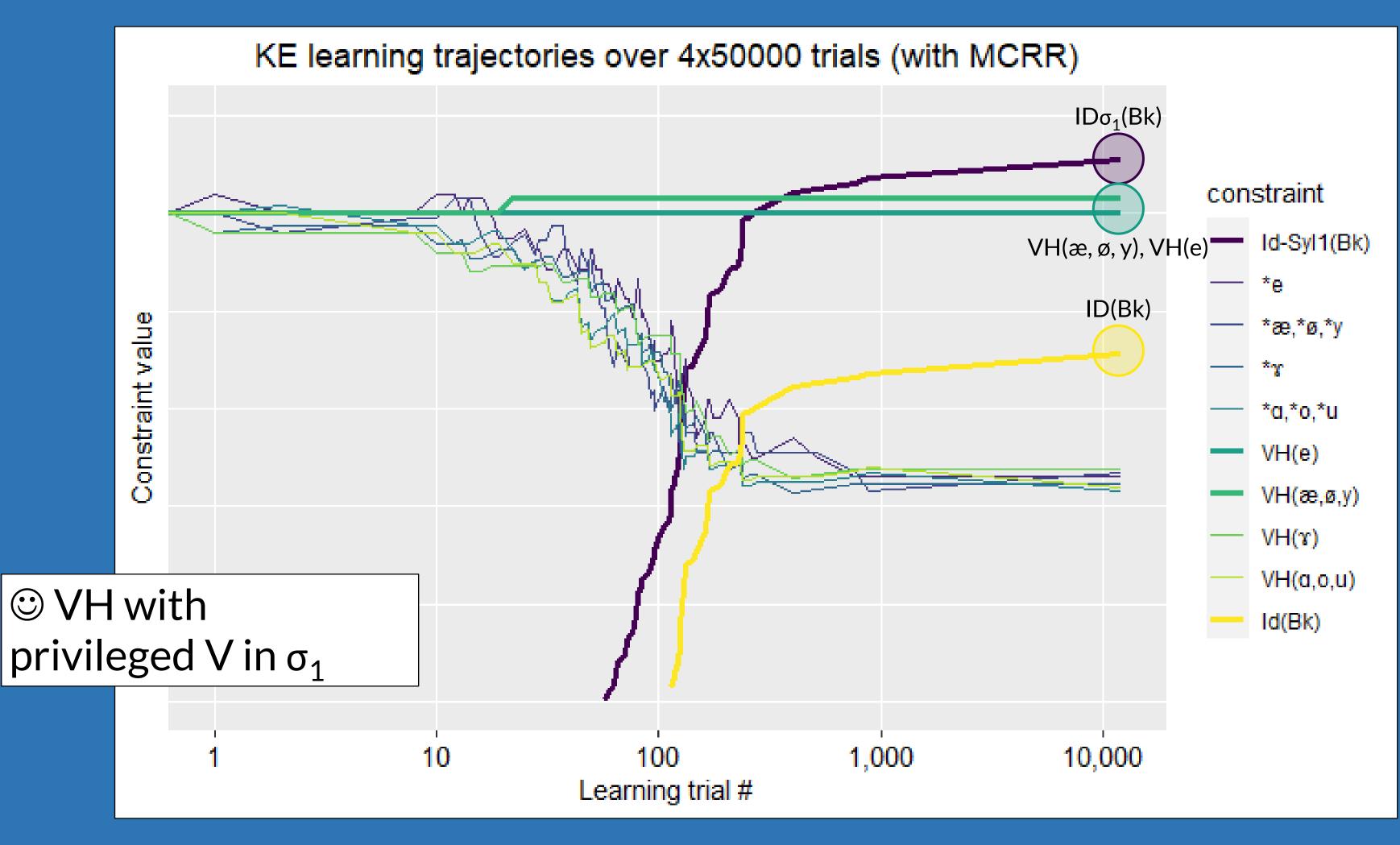
/æo/ VH(æ,ø,		ID $\sigma_1(Bk)$	ID(Bk)	*æ,*ø,*y
a. æo	*!			*
b.≌ æø			*	**
c. ao		*!	*	

K&P's constraints cannot account for KE's alternating /e/ but transparent /i/:

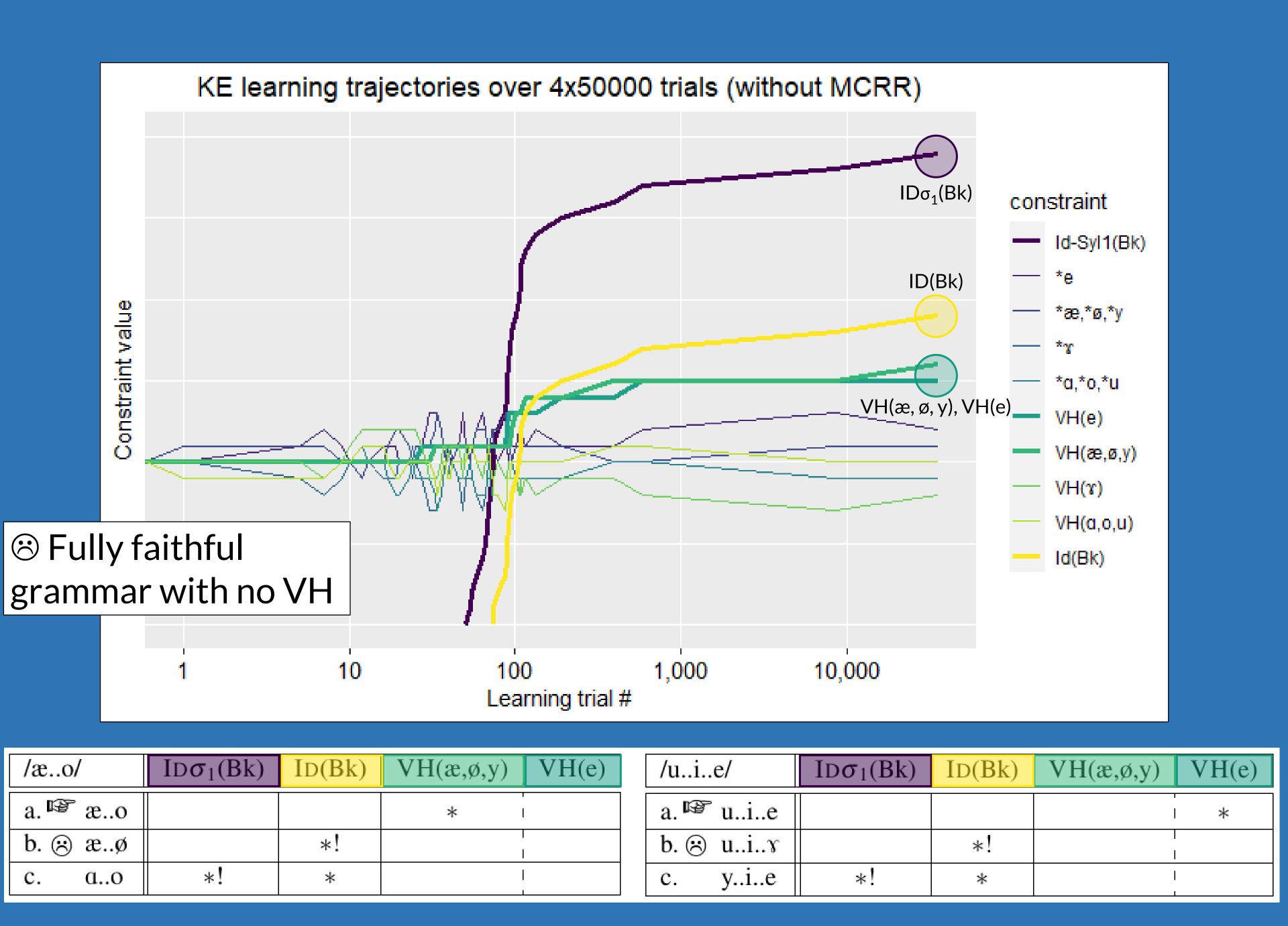
/uie/	VH(æ,ø,y)	ID $\sigma_1(Bk)$	ID(Bk)	*e
a. 🖙 uie				*
b. 🛞 uiv			*	
c. yie		*!	*	*

I propose⁹ these additions to K&P's:

- VH(_x)
- *ɑ. *u. *o


• *e

	•••	•••	•	
)	VH	(a,	u,	o)


• VH(e)

/uie/	VH(e)	ID $\sigma_1(Bk)$	ID(Bk)	*e
a. uie	*!			*
b. 🖙 uix			*	
c. yie		*!	*	*

Magri's calibrated re-ranking rule⁸ addresses antagonistic markedness constraint behaviour in addition to the credit problem²

/æo/	ID $\sigma_1(Bk)$	VH(æ,ø,y)	VH(e)	ID(Bk)	/u	ie/	ID $\sigma_1(Bk)$	VH(æ,ø,y)	VH(e)	ID(Bk)
a. æo		*!			a.	uie		' 	*!	
b.≌ æø				*	b. 🎼	☞ uix				*
c. ao	*!			*	c.	yie	*!			*

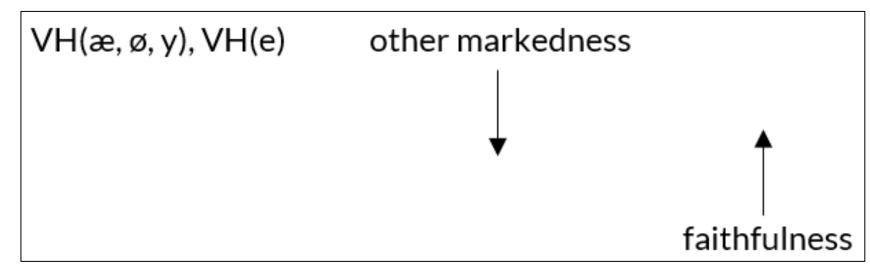
S

ge

But: b. **I**

number of constraints demoted promotion amount = \times plasticity 1 + number of constraints promoted SO WHAT?

This highlights the idea that problems associated with the behaviour of antagonistic constraints can be mitigated by the application of a solution (Magri's calibrated re-ranking rule) that was originally proposed to solve a different problem. Which other kinds of scenarios might benefit from the same?


GRADUAL LEARNING

- Gradual Learning Algorithm:¹
 - Error-driven, gradual
 - Implemented by OTSoft⁵ and Vesik⁹
 - Relative frequencies of input forms from Estonian
 - Dialect Corpus⁷ (EDC)
 - Including two widely-used biases:

ias	Result if omitted
ow initial	IDσ₁(Bk) >> ID(Bk) >> VH(æ, ø, y), VH(e)
aithfulness ³	Fully faithful grammar with no VH
pecific over	VH($\mathfrak{a}, \mathfrak{g}, \mathfrak{g}, \mathfrak{g}$), VH(\mathfrak{e}) >> ID(Bk) >> ID $\sigma_1(Bk)$
en. faith ⁴	VH present but σ_1 's V not preserved

MAGRI'S CALIBRATED RE-RANKING RULE

Need markedness constraints to fall while VH constraints remain high.

 $* \gamma$ and * e are antagonistic; oscillate instead of falling. • Violation profile for a sample GLA learning error:

u/	VH(æ,ø,y)	VH(e)	*æ,*ø,*y	*e	*γ	ID $\sigma_1(Bk)$	ID(Bk)
√ vu					$L{**} \rightarrow$		
🖙 ey			$\leftarrow \mathrm{W}*$	$\leftarrow W \ast$		$\leftarrow W \ast$	$\leftarrow W{\ast\ast}$

- Magri's⁸ calibrated re-ranking rule (MCRR):
- Proposed to mitigate concerns associated with the Credit Problem.²
- Here, ensures that certain markedness constraints fall which otherwise wouldn't.

REFERENCES [1] Boersma, P., & Hayes, B. (2001). Empirical tests of the gradual learning algorithm. *Linguistic* Inquiry, 32(1), 45–86. [2] Dresher, B.E. (1999). Charting the learning path: Cues to parameter setting. Linguistic Inquiry, 30(1), 27–67. [3] Gnanadesikan, A. (1995). Markedness and faithfulness constraints in child phonology. Rutgers Optimality Archive [ROA-67]. [4] Hayes, B. (2004). Phonological acquisition in optimality theory: The early stages. Cambridge University Press. [5] Hayes, B., Tesar, B., & Zuraw, K. (2013). OTSoft [software] package] [Version 2.6 beta]. Retrieved April 11, 2021, from

http://www.linguistics.ucla.edu/people/hayes/otsoft/[6] Kiparsky, P., & Pajusalu, K. (2003, 01). Towards a typology of disharmony. Linguistic Review, 20, 217-241. [7] Lindström, L. (2013). Eesti murdekorpus [Estonian dialect corpus]. Center of Estonian Language Resources. [8] Magri, G. (2012). Convergence of error-driven ranking algorithms. Phonology, 29(2), 213–269. [9] Vesik, K. (2022). Laying a foundation for bidialectalism: necessary biases for algorithmic learning of two dialects of Estonian. [Unpublished manuscript, University of British Columbia]